精英家教网 > 高中数学 > 题目详情
14.将函数y=sin2x的图象向右平移$\frac{π}{6}$个单位,得到函数y=f(x)的图象,则f(x)=(  )
A.$cos(2x-\frac{π}{6})$B.$sin(2x-\frac{π}{6})$C.$cos(2x-\frac{π}{3})$D.$sin(2x-\frac{π}{3})$

分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin2x的图象向右平移$\frac{π}{6}$个单位,得到函数y=f(x)=sin2(x-$\frac{π}{6}$)=sin(2x-$\frac{π}{3}$)的图象,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某棱柱的三视图如图示,则该棱柱的体积为(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某特色餐馆开通了美团外卖服务,在一周内的某特色外卖份数x(份)与收入y(元)之间有如下的对应数据:
外卖份数x(份)24568
收入y(元)3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y-\widehatb\overline x$;
参考数据:$\sum_{i=1}^5{x_1^2}=145,\sum_{i=1}^5{y_1^2}=13500,\sum_{i=1}^5{{x_i}{y_i}}=1380$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=Asin({ωx+φ})({x∈R,A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,如果${x_1},{x_2}∈({-\frac{π}{6},\frac{π}{3}})$,且f(x1)=f(x2),则f(x1+x2)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=0,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=$\frac{n{a}_{n}}{2}$,则数列{an}通项为an=p(n-1)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在空间直角坐标系O-xyz中,点(1,2,-2)关于点(-1,0,1)的对称点是(  )
A.(-3,-2,4)B.(3,-2,-4)C.(-3,2,-4)D.(-3,2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的方程为x2+y2-2x+4y-3=0,直线l:x-y+t=0.
(1)若直线l与圆C相切,求实数t的值;
(2)若直线l与圆C相交于M,N两点,且|MN|=4,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3-x+1的图象在点(1,f(1))处的切线过点(2,3).
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=e-x+ax,x∈R有两个零点,则实数a的取值范围为(  )
A.1<a<eB.a>eC.-e<a<-1D.a<-e

查看答案和解析>>

同步练习册答案