分析 利用ρ2=x2+y2,tan$θ=\frac{y}{x}$及点所在的象限即可得出.
解答 解:∵点的直角坐标($\frac{π}{2}$,-$\frac{\sqrt{3}π}{2}$),
∴$ρ=\sqrt{(\frac{π}{2})^{2}+(-\frac{\sqrt{3}π}{2})^{2}}$=π.
tan$θ=\frac{-\frac{\sqrt{3}}{2}π}{\frac{π}{2}}$=-$\sqrt{3}$,
∵点的直角坐标($\frac{π}{2}$,-$\frac{\sqrt{3}π}{2}$)在第四象限,
∴$θ=\frac{5π}{3}$.
∴此点的极坐标为(π,$\frac{5π}{3}$).
故答案为:($π,\frac{5π}{3}$).
点评 本题考查点的极坐标的求法,是基础题,解题时要认真审题,注意极坐标、直角坐标互化公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $16(2+\sqrt{3})$ | C. | $16(2-\sqrt{3})$ | D. | $3\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com