1£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µã$P£¨{-1£¬\frac{{2\sqrt{3}}}{3}}£©$ÔÚÍÖÔ²CÉÏ£¬|PF2|=$\frac{{4\sqrt{3}}}{3}$£¬¹ýµãF1µÄÖ±ÏßlÓëÍÖÔ²C·Ö±ð½»ÓÚM£¬NÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³ÌºÍÀëÐÄÂÊ£»
£¨2£©Èô¡÷OMNµÄÃæ»ýΪ$\frac{12}{11}$£¬OÎª×ø±êÔ­µã£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÓÉÁ½µãÖ®¼äµÄ¾àÀ빫ʽ|PF2|=$\frac{{4\sqrt{3}}}{3}$£¬¼´¿ÉÇóµÃcµÄÖµ£¬¼´¿ÉÇóµÃØ­PF1Ø­=$\frac{2\sqrt{3}}{3}$£¬¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬¼´¿ÉÇóµÃaµÄÖµ£¬ÇóµÃbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©Óɵ±Ö±ÏßMNÓëxÖᴹֱʱ£¬ÏÔÈ»²»³ÉÁ¢£¬ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼´¿ÉÇókµÄÖµ£¬ÇóµÃÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÓÉ|PF2|=$\sqrt{£¨-1-c£©^{2}+£¨\frac{2\sqrt{3}}{3}£©^{2}}$=$\frac{{4\sqrt{3}}}{3}$£¬½âµÃ£ºc=1£¬ÔòF1£¨-1£¬0£©£¬PF1¡ÍF1F2£¬
ÔòØ­PF1Ø­=$\frac{2\sqrt{3}}{3}$£¬
ÓÉØ­PF1Ø­+Ø­PF2Ø­=2a=2$\sqrt{3}$£¬a=$\sqrt{3}$£¬
b2=a2-c2=2£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£»
£¨2£©µ±Ö±ÏßMNÓëxÖᴹֱʱ£¬Ø­MNØ­=$\frac{4\sqrt{3}}{3}$£¬Ôò¡÷OMNµÄÃæ»ýS¡÷OMN=$\frac{2\sqrt{3}}{3}$£¬²»·ûºÏÌâÒ⣬ÉáÈ¥£»
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÉèÖ±Ïßl£ºy=k£¨x+1£©£¬
$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\\{y=k£¨x+1£©}\end{array}\right.$£¬ÕûÀíµÃ£º£¨2+3k2£©x2+6k2x+£¨3k2-6£©=0£¬
Ôòx1+x1=$\frac{6{k}^{2}}{2+3{k}^{2}}$£¬x1x2=$\frac{3{k}^{2}-6}{2+3{k}^{2}}$£¬
Ø­MNØ­=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{3}£¨{k}^{2}+1£©}{2+3{k}^{2}}$£¬
Ô­µãOµ½Ö±ÏßMNµÄ¾àÀëd=$\frac{Ø­kØ­}{\sqrt{1+{k}^{2}}}$£¬
ÔòÈý½ÇÐεÄÃæ»ýS¡÷OMN=$\frac{1}{2}$¡Á$\frac{2\sqrt{3}£¨{k}^{2}+1£©}{2+3{k}^{2}}$¡Á$\frac{Ø­kØ­}{\sqrt{1+{k}^{2}}}$=$\frac{12}{11}$£¬½âµÃ£ºk2=3£¬Ôòk=¡À$\sqrt{3}$£¬
¡àÖ±ÏßMNµÄ·½³ÌΪy=$\sqrt{3}$£¨x+1£©»òy=-$\sqrt{3}$£¨x+1£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¼°·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈçͼËùʾ£¬Õý·½ÌåABCD-A'B'C'D'µÄÀⳤΪ1£¬µãOÊÇÕý·½ÐÎA'B'C'D'µÄÖÐÐÄ£¬ÔòµãOµ½Æ½ÃæABC'D'µÄ¾àÀëÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{{\sqrt{2}}}{2}$C£®$\frac{{\sqrt{3}}}{2}$D£®$\frac{\sqrt{2}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®½«µãµÄÖ±½Ç×ø±ê£¨$\frac{¦Ð}{2}$£¬-$\frac{\sqrt{3}¦Ð}{2}$£©»¯Îª¼«×ø±ê£¨¦Ñ£¾0£¬¦È¡Ê[0£¬2¦Ð£©£©Îª£¨$¦Ð£¬\frac{5¦Ð}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªPÊÇABCËùÔÚÆ½ÃæÄÚÒ»µã£¬$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\frac{3}{5}$$\overrightarrow{PA}$=$\overrightarrow{0}$£¬ÏÖ½«Ò»Á£»Æ¶¹Ëæ»úÈöÔÚABCÄÚ£¬Ôò»Æ¶¹ÂäÔÚPBCÄڵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{13}$B£®$\frac{2}{3}$C£®$\frac{3}{10}$D£®$\frac{10}{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÊýÁÐn¡ÊN*Âú×ãbn+1=$\frac{1}{2}{b_n}+\frac{1}{4}£¬{b_1}=\frac{7}{2}£¬{T_n}$Ϊ{bn}µÄǰnÏîºÍ£®Èç¹û¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽ$\frac{12k}{{12+n-2{T_n}}}$¡Ý2n-7ºã³ÉÁ¢£¬ÔòʵÊýkµÄȡֵ·¶Î§Îª[$\frac{3}{32}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¦ÁÊǵÚÈýÏóÏ޽ǣ¬»¯¼ò$\sqrt{\frac{{1+cos£¨\frac{9¦Ð}{2}-¦Á£©}}{1+sin£¨¦Á-5¦Ð£©}}-\sqrt{\frac{{1-cos£¨-\frac{3¦Ð}{2}-¦Á£©}}{1-sin£¨¦Á-9¦Ð£©}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®½«f£¨x£©=cos¦Øx£¨¦Ø£¾0£©£¬µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È£¬µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£®Èôy=g£¨x£©ÊÇÆæº¯Êý£¬Ôò¦ØµÄ×îСֵΪ£¨¡¡¡¡£©
A£®6B£®$\frac{9}{2}$C£®$\frac{3}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®$cos\frac{9¦Ð}{4}$=$\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÈçͼËùʾµÄ¾ØÐÎABCDÖУ¬AB=2£¬AD=1£¬EΪÏß¶ÎBCÉϵĵ㣬Ôò$\overrightarrow{AE}•\overrightarrow{DE}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®4C£®$\frac{17}{4}$D£®$\frac{15}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸