·ÖÎö £¨1£©ÓÉÁ½µãÖ®¼äµÄ¾àÀ빫ʽ|PF2|=$\frac{{4\sqrt{3}}}{3}$£¬¼´¿ÉÇóµÃcµÄÖµ£¬¼´¿ÉÇóµÃØPF1Ø=$\frac{2\sqrt{3}}{3}$£¬¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬¼´¿ÉÇóµÃaµÄÖµ£¬ÇóµÃbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©Óɵ±Ö±ÏßMNÓëxÖᴹֱʱ£¬ÏÔÈ»²»³ÉÁ¢£¬ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼´¿ÉÇókµÄÖµ£¬ÇóµÃÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÓÉ|PF2|=$\sqrt{£¨-1-c£©^{2}+£¨\frac{2\sqrt{3}}{3}£©^{2}}$=$\frac{{4\sqrt{3}}}{3}$£¬½âµÃ£ºc=1£¬ÔòF1£¨-1£¬0£©£¬PF1¡ÍF1F2£¬
ÔòØPF1Ø=$\frac{2\sqrt{3}}{3}$£¬
ÓÉØPF1Ø+ØPF2Ø=2a=2$\sqrt{3}$£¬a=$\sqrt{3}$£¬
b2=a2-c2=2£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£»
£¨2£©µ±Ö±ÏßMNÓëxÖᴹֱʱ£¬ØMNØ=$\frac{4\sqrt{3}}{3}$£¬Ôò¡÷OMNµÄÃæ»ýS¡÷OMN=$\frac{2\sqrt{3}}{3}$£¬²»·ûºÏÌâÒ⣬ÉáÈ¥£»
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÉèÖ±Ïßl£ºy=k£¨x+1£©£¬
$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\\{y=k£¨x+1£©}\end{array}\right.$£¬ÕûÀíµÃ£º£¨2+3k2£©x2+6k2x+£¨3k2-6£©=0£¬
Ôòx1+x1=$\frac{6{k}^{2}}{2+3{k}^{2}}$£¬x1x2=$\frac{3{k}^{2}-6}{2+3{k}^{2}}$£¬
ØMNØ=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{3}£¨{k}^{2}+1£©}{2+3{k}^{2}}$£¬
ÔµãOµ½Ö±ÏßMNµÄ¾àÀëd=$\frac{ØkØ}{\sqrt{1+{k}^{2}}}$£¬
ÔòÈý½ÇÐεÄÃæ»ýS¡÷OMN=$\frac{1}{2}$¡Á$\frac{2\sqrt{3}£¨{k}^{2}+1£©}{2+3{k}^{2}}$¡Á$\frac{ØkØ}{\sqrt{1+{k}^{2}}}$=$\frac{12}{11}$£¬½âµÃ£ºk2=3£¬Ôòk=¡À$\sqrt{3}$£¬
¡àÖ±ÏßMNµÄ·½³ÌΪy=$\sqrt{3}$£¨x+1£©»òy=-$\sqrt{3}$£¨x+1£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¼°·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{2}}}{2}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | $\frac{\sqrt{2}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3}{13}$ | B£® | $\frac{2}{3}$ | C£® | $\frac{3}{10}$ | D£® | $\frac{10}{13}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6 | B£® | $\frac{9}{2}$ | C£® | $\frac{3}{2}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 4 | C£® | $\frac{17}{4}$ | D£® | $\frac{15}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com