精英家教网 > 高中数学 > 题目详情
11.在如图所示的矩形ABCD中,AB=2,AD=1,E为线段BC上的点,则$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为(  )
A.2B.4C.$\frac{17}{4}$D.$\frac{15}{4}$

分析 以BC所在直线为x轴,BA所在直线为y轴建立平面直角坐标系,可得A(0,2),D(1,2),设E(x,0)(0≤x≤1),得到$\overrightarrow{AE}、\overrightarrow{DE}$的坐标,代入$\overrightarrow{AD}•\overrightarrow{DE}$,展开后利用配方法求得$\overrightarrow{AD}•\overrightarrow{DE}$的最小值.

解答 解:以BC所在直线为x轴,BA所在直线为y轴建立平面直角坐标系,
则A(0,2),D(1,2),设E(x,0)(0≤x≤1),
则$\overrightarrow{AE}=(x,-2)$,$\overrightarrow{DE}=(x-1,-2)$.
∴$\overrightarrow{AE}•\overrightarrow{DE}$=(x,-2)•(x-1,-2)=x2-x+4=$(x-\frac{1}{2})^{2}+\frac{15}{4}$.
∵0≤x≤1,
∴$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为:$\frac{15}{4}$.
故选:D.

点评 本题考查平面向量的数量积运算,利用建系起到事半功倍的效果,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,点$P({-1,\frac{{2\sqrt{3}}}{3}})$在椭圆C上,|PF2|=$\frac{{4\sqrt{3}}}{3}$,过点F1的直线l与椭圆C分别交于M,N两点.
(1)求椭圆C的标准方程和离心率;
(2)若△OMN的面积为$\frac{12}{11}$,O为坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设M是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一点,F1,F2为焦点,且$∠{F_1}M{F_2}=\frac{π}{3}$,则△MF1F2的面积为(  )
A.3B.$16(2+\sqrt{3})$C.$16(2-\sqrt{3})$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.参数方程$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}$(θ为参数)表示的曲线是(  )
A.以$({±\sqrt{7},0})$为焦点的椭圆B.以(±4,0)为焦点的椭圆
C.离心率为$\frac{{\sqrt{7}}}{5}$的椭圆D.离心率为$\frac{3}{5}$的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{1}{2}$.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果$\frac{x^2}{4}+\frac{y^2}{m}=1$表示焦点在x轴的椭圆,则实数m的取值范围是(  )
A.(0,4]B.(0,4)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足:a1=a,an+1=$\frac{2{a}_{n}}{{a}_{n}^{2}+1}$(a>0且a≠1,n∈N*).
(1)证明:当n≥2时,an<an+1<1;
(2)若b∈(a2,1),求证:当整数k≥$\frac{(b-{a}_{2})(b+1)}{{a}_{2}(1-b)}$+1时,ak+1>b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图所示,设该几何体中最长棱所在的直线为m,与直线m不相交的其中一条棱所在直线为n,则直线m与n所成的角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-x2-3,g(x)=$\frac{a}{x}$+xlnx的定义域都是[$\frac{1}{2}$,2]
(1)求f(x)的最大值;
(2)若对任意的s,t∈[$\frac{1}{2}$,2]都有f(s)≤g(t)成立,求a的范围.

查看答案和解析>>

同步练习册答案