分析 在三角函数式中把x的系数用诱导公式变为正,表现出来是负号提前,
这样函数的增区间变成了去掉负号后的函数的减区间,再根据正弦函数的减区间求出结果即可.
解答 解:∵y=2sin($\frac{π}{6}$-2x)=-2sin(2x-$\frac{π}{6}$),
∴只要求y=2sin(2x-$\frac{π}{6}$)的单调减区间即可;
∵y=sinx的减区间为[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z,
∴令2x-$\frac{π}{6}$∈[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z,
解得x∈[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
故答案为:[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
点评 求三角函数单调性时,若括号中给出角的自变量系数为负,要先用诱导公式把负号变正,否则,计算出的单调区间刚好相反,原因是复合函数单调性引起的.
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 23 | C. | 34 | D. | 46 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{3},+∞})$ | B. | $[{\frac{1}{5},+∞})$ | C. | $\left\{1\right\}∪[{\frac{1}{3},+∞})$ | D. | $\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2) | B. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1) | C. | (-∞,1) | D. | (-∞,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com