精英家教网 > 高中数学 > 题目详情

【题目】为研究“在n次独立重复试验中,事件A恰好发生k次的概率的和”这个课题,我们可以分三步进行研究:(I)取特殊事件进行研究;(Ⅱ)观察分析上述结果得到研究结论;(Ⅲ)试证明你得到的结论。现在,请你完成:

(1)抛掷硬币4次,设分别表示正面向上次数为0次,1次,2次,3次,4次的概率,求 (用分数表示),并求;

(2)抛掷一颗骰子三次,设分别表示向上一面点数是3恰好出现0次,1次,2次,3次的概率,求 (用分数表示),并求;

(3)由(1)、(2)写出结论,并对得到的结论给予解释或给予证明.

【答案】(1) (2) (3)在n次独立重复试验中,事件A恰好发生次的概率的和为1.

【解析】试题分析:(1)拋掷硬币掷得正面向上的次数服从二项分布分别求得的值可得的值;(2)抛掷骰子掷得向上一面点数是的的次数服从二项分布分别求得的值可得的值;(3)是必然事件,所以在次独立重复试验中,事件A恰好发生次的概率的和为.

试题解析(1)用表示第次抛掷硬币掷得正面向上的事件,则发生的次数

服从二项分布,即

所以

所以

(2)用表示第次抛掷骰子掷得向上一面点数是3的事件,则发生的次数服从二项分布,即,所以

所以

(3)在n次独立重复试验中,事件A恰好发生次的概率的和为1

证明:在n次独立重复试验中,事件A每一次发生的概率为,

,,

或这样解释: 是必然事件,所以在n次独立重复试验中,事件A恰好发生次的概率的和为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC的对边分别为abc

(1)若的面积,求a+c值;

(2)若2cosC+)=c2,求角C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2,若摸到的是2个相同颜色的球,则为中奖.

试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出一个用循环语句编写的程序:

k=1

sum=0

WHILE k<10

 sum=sum+k2

 k=k+1

WEND

PRINT sum

END

(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;

(2)请用另一种循环语句的形式把该程序写出来.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)抛掷一颗骰子两次,定义随机变量

试写出随机变量的分布列(用表格格式);

(2)抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,求第二次掷得向上一面点数也是偶数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

(1)的值及函数的极值;

(2)证明:当时,

(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,当x=时,y最大值1,当x=时,取得最小值-1

(1)求y=fx)的解析式;

(2)写出此函数取得最大值时自变量x的集合和它的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆 的长轴为,过点的直线轴垂直,椭圆上一点与椭圆的长轴的两个端点构成的三角形的最大面积为2,且椭圆的离心率为.

(1)求椭圆的标准方程;

(2) 设是椭圆上异于 的任意一点,连接并延长交直线于点 点为的中点,试判断直线与椭圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的上、下焦点分别为F1 , F2 , 点D在椭圆上,DF2⊥F1F2 , △F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.
(1)求椭圆E与抛物线C的方程;
(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.

查看答案和解析>>

同步练习册答案