精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点是A(-3,0)、B(2,1)、C(-2,3).
求:(1)BC边上的高所在的直线的方程;(2)以线段AB为直径的圆的方程.
(1)因为直线BC经过B(2,1)和C(-2,3)两点,
 kBC=
3-1
-2-2
=-
1
2

∴BC边上的高所在直线的斜率 k=2,
∴BC边上的高所在直线的方程为:y-0=2(x+3),
即2x-y+6=0.
(2)由中点坐标公式得线段AB的中点坐标为E(-
1
2
1
2
),即圆心的坐标;
r=|AE|=
(-3+
1
2
)
2
+(0-
1
2
)
2
=
26

故所求圆的方程为:(x+
1
2
2+(y-
1
2
2=
13
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的顶点为A(1,1,1),B(0,-1,3),C(3,2,3),则△ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点是A(-3,0)、B(2,1)、C(-2,3).
求:(1)BC边上的高所在的直线的方程;(2)以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区二模)已知△ABC的顶点B、C在椭圆
x2
3
+y2=1上,且BC边经过椭圆的一个焦点,顶点A是椭圆的另一个焦点,则△ABC的周长是
4
3
4
3

查看答案和解析>>

科目:高中数学 来源:2007-2008学年北京市海淀区高二(上)期中数学试卷(解析版) 题型:解答题

已知△ABC的顶点是A(-3,0)、B(2,1)、C(-2,3).
求:(1)BC边上的高所在的直线的方程;(2)以线段AB为直径的圆的方程.

查看答案和解析>>

同步练习册答案