精英家教网 > 高中数学 > 题目详情
5.函数y=$\sqrt{4-|x|}$的定义域是[-4,4].

分析 根据二次根式的性质得到不等式,解出即可.

解答 解:由题意得:4-|x|≥0,
解得:-4≤x≤4,
故答案为:[-4,4].

点评 本题考查了函数的定义域问题,考查二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知圆C的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,则直线l与圆在一象限交点的直角坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.
(Ⅰ)求图中实数a的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设向量$\overrightarrow{a}$=(1,1),i是虚数单位,复数(m-i)•i所对应的向量为$\overrightarrow{b}$,若$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m的值等于(  )
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.四棱锥S-ABCD,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠DAB=135°,BC=2$\sqrt{2}$,SB=SC=AB=2,F为线段SB的中点.
(1)求证:SD∥平面CFA;
(2)证明:SA⊥BC;
(3)求三棱锥A-SCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}}$减区间为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)的二次项系数为a,不等式f(x)<2x的解集是(-1,2),且方程f(x)+$\frac{9}{4}$a=0有两个相等的实数根.
(I)求f(x)的解析式;
(Ⅱ)已知不等式f(x)<0的解集为M,不等式f(x)>2(m+1)x-m2-m-2的解集为N,若M∪N=N,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设g(x+1)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{2x,1<x<2}\end{array}\right.$,求g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=$\frac{\sqrt{x+3}}{4-{x}^{2}}$的定义域为(  )
A.[-3,-2)∪(-2,2)B.[-3,-2)∪(2,+∞)C.[-3,-2)∪(-2,2)D.[-3,-2)∪(-2,2)∪(2,+∞)

查看答案和解析>>

同步练习册答案