精英家教网 > 高中数学 > 题目详情
14.设g(x+1)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{2x,1<x<2}\end{array}\right.$,求g(x).

分析 根据已知中分段函数g(x+1)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{2x,1<x<2}\end{array}\right.$,利用换元法可得g(x)的解析式.

解答 解:令t=x+1,则x=t-1,
则g(t)=$\left\{\begin{array}{l}{(t-1)}^{2},0≤t-1≤1\\ 2(t-1),1<t-1<2\end{array}\right.$=$\left\{\begin{array}{l}{t}^{2}-2t+1,1≤t≤2\\ 2t-2,2<t<3\end{array}\right.$,
故g(x)=$\left\{\begin{array}{l}{x}^{2}-2x+1,1≤x≤2\\ 2x-2,2<x<3\end{array}\right.$

点评 本题考查的知识点是分段函数的应用,函数解析式的求解及常用方法,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设有一组圆Ck:(x-k)2+(y-k)2=4,(k∈R),下命题正确的是①②③⑤(写出所有正确结论编号).
①不论k如何变化,圆心Ck始终在一条直线上;
②所有圆Ck均不经过点(3,0);
③存在一条定直线始终与圆Ck相切;
④当k=0时,若圆Ck上至少有一点到直线x+y+m=0的距离为1,则m的取值范围为(3$\sqrt{2}$,+∞);
⑤若k$∈(\frac{\sqrt{2}}{2},\frac{3\sqrt{2}}{2})$,若圆Ck上总存在两点到原点的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\sqrt{4-|x|}$的定义域是[-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.log23•log34…log3132=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p是r的充分条件,而r是q的必要条件,同时也是s的充分条件,q是s的必要条件.
(1)r是p的什么条件?
(2)p是q的什么条件?
(3)在p,q,r,s中,哪几对互为充要条件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=-4x+2x+1的单调递增区间是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若a=$\frac{1}{\sqrt{2}}$,b=$\frac{1}{\root{3}{2}}$,则[${a}^{-\frac{3}{2}}{b}^{2}(a{b}^{-2})^{-\frac{1}{2}}$]2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若不等式xy>x+z对任意x∈(0,+∞),y∈(1,+∞)恒成立,则实数z的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.[0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=mx+k($\frac{1}{m}$)x(m>0,且m≠1).
(1)是否存在实数k,使得函数f(x)是奇函数?如果存在,求出k的值;如果不存在,请说明理由;
(2)是否存在实数k,使得函数f(x)是偶函数?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案