精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinxsin(x+
π
6
).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[0,
π
2
]时,求f(x)的值域.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:计算题,三角函数的求值,三角函数的图像与性质
分析:(1)运用两角和差公式和二倍角公式,化简整理,再由周期公式和正弦函数的单调增区间,即可得到;
(2)由x的范围,可得2x-
π
3
的范围,再由正弦函数的图象和性质,即可得到值域.
解答: 解:(1)f(x)=2sinxsin(x+
π
6

=2sinx(
3
2
sinx+
1
2
cosx)=
3
sin2x+sinxcosx
=
3
(1-cos2x)
2
+
1
2
sin2x=
3
2
+sin(2x-
π
3

则函数f(x)的最小正周期T=
2
=π,
由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈Z,
解得,kπ-
π
12
≤x≤kπ+
12
,k∈Z,
则f(x)的单调递增区间为[kπ-
π
12
,kπ+
12
],k∈Z;
(2)当x∈[0,
π
2
]时,2x-
π
3
∈[-
π
3
3
],
sin(2x-
π
3
)∈[-
3
2
,1],
则f(x)的值域为[0,1+
3
2
].
点评:本题考查三角函数的化简和求值,考查二倍角公式和两角和差的正弦公式,考查正弦函数的单调性和值域,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求过三点A(1,4),B(-2,3),C(4,-5)的圆的方程,并求这个圆的圆心坐标和半径长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,平面SCD⊥底面ABCD,底面ABCD是菱形,AD=2
3
,且SA=SD=
39
.二面角S-AD-B大小为120°
(1)求∠ADC的大小;
(2)求二面角A-SD-C的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据正弦函数图象,不等式sinx≥-
2
2
的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=
π
2
-
π
2
cosxdx,则(ax2-
1
x
)5
的二项展开式中,x的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了鼓励大家少用电,供电部门规定,当每月用电不超过200度时,按每度0.56元收费;当每月用电量超过200度但不超过400度时,超过的部分按每度1元收费;超过400度的部分按每度2元收费试求:
(1)求出月用电量x(度)与每月电费y(元)之间的函数关系式;
(2)小李家在6月份所付电费为305元,问小李家在6月份的用电量为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=loga(1-x),θ(x)=
4
x
+x
(1)当0<a<1时,解不等式,2f(x)-g(x)≥0
(2)证明:函数θ(x)在x∈(0,2]单调递减;
(3)当a>1,x∈[0,1]时,总有2f(x)+m≥g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=y1+y2,y1
x+1
成正比例,y2与x+3成反比例,并且x=0时,y=4,x=3时y=5,求y与x之间的函数关系式.

查看答案和解析>>

同步练习册答案