精英家教网 > 高中数学 > 题目详情

(本小题满分10分)选修4-4:坐标系与参数方程
已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.圆的参数方程为(为参数),点的极坐标为. (1)化圆的参数方程为极坐标方程;
(2)若点是圆上的任意一点, 求,两点间距离的最小值.

(Ⅰ)(Ⅱ)

解析试题分析:(1)圆C的直角坐标方程为,展开得化为极坐标方程
(2)点Q的直角坐标为,且点在圆内,由(1)知点的直角坐标为所以,所以两点间距离的最小值为
考点:极坐标方程及两点间距离最值
点评:第二小题中首先求圆心到定点的距离,再利用圆的对称性求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系.x0y中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线 C的极坐标方程为:
(I)求曲线l的直角坐标方程;
(II)若直线l的参数方程为(t为参数),直线l与曲线C相交于A、B两点求|AB|的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)试写出直线的直角坐标方程和曲线的参数方程;
(2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:
(I)求曲线C1的普通方程;
(II)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—4:坐标系与参数方程选讲
在直角坐标系中,直线l的参数方程为:在以O为极点,以x 轴的正半轴为极轴的极坐标系中,圆C的极坐标方程为:
(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系上取两个定点,再取两个动点 ,且.
(Ⅰ)求直线交点的轨迹的方程;
(Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)若把曲线上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题分两小题,每小题7分,共14分)
(1)极坐标系中,A为曲线上的动点,B为直线的动点,求距离的最小值。
(2)求函数y=的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图所示,圆内接四边形ABCD的一组对边AD、BC的延长线相交于点P,对角线AC、BD相交于点Q,则图中相似三角形共有

A.4对    B.2对    C.5对    D.3对

查看答案和解析>>

同步练习册答案