精英家教网 > 高中数学 > 题目详情
已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
(1);(2)相切

试题分析:(1)由椭圆的左右顶点分别为,离心率,即可求出的值.即可得到结论.
(2)依题意假设点C坐标,以及点R的坐标,由点A,C,R三点共线即可求得点R的坐标表示.从而表示出点D的坐标,写出直线CD的方程,再计算圆心到该直线的距离,再根据点C在圆上,即可判断直线与圆的位置关系.
(1)由题意可得,  ∴.     2分
,                       3分
所以椭圆的方程为.                      4分
(2)解法一:曲线是以为圆心,半径为2的圆.
,点的坐标为,       5分
三点共线,   ∴,       6分
,则
,                               7分
∴点的坐标为,点的坐标为,      8分
∴直线的斜率为
,∴
,                                     10分
∴直线的方程为,化简得
∴圆心到直线的距离,       11分
所以直线与曲线相切.                      12分
解法二:同解法一得,          10分
,故,即
所以直线与圆相切.                      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

有一隧道,内设双行线公路,同方向有两个车道(共有四个车道),每个车道宽为3m,此隧道的截面由一个长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设车辆顶部为平顶)与隧道顶部在竖直方向上高度之差至少为0.25m,靠近中轴线的车道为快车道,两侧的车道为慢车道,则车辆通过隧道时,慢车道的限制高度为______.(精确到0.1m)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知曲线上的点到点的距离比它到直线的距离小2.
(1)求曲线的方程;
(2)曲线在点处的切线轴交于点.直线分别与直线轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.
(1)已知直线的斜率为,用表示点的坐标;
(2)若过原点的直线垂直,证明:点到直线的距离的最大值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:(a>b>0),过点(0,1),且离心率为
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线lx=2x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点为,点为该抛物线上的动点,又点
的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线的焦点为,已知为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的 左,右焦点。
(1)若P是该椭圆上一个动点,求的 最大值和最小值。
(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为______.

查看答案和解析>>

同步练习册答案