精英家教网 > 高中数学 > 题目详情
已知向量
a
=(-3,2),
b
=(-1,0),若λ
a
+
b
a
-2
b
垂直,则实数λ的值为(  )
A、-
1
7
B、
1
7
C、-
1
6
D、
1
6
分析:首先由向量坐标运算表示出λ
a
+
b
a
-2
b
的坐标,再由它们垂直列方程解之即可.
解答:解:由题意知 λ
a
+
b
=λ(-3,2)+(-1,0)=(-3λ-1,2λ),
a
-2
b
=(-3,2)-2(-1,0)=(-1,2),
又因为两向量垂直,
所以(-3λ-1,2λ)(-1,2)=0,即3λ+1+4λ=0,
解得λ=-
1
7

故选A.
点评:本题考查向量坐标运算及两向量垂直的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(-3,2),
b
=(-1,0),且向量λ
a
+
b
a
-2
b
垂直,则实数λ的值为
-
1
7
-
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天河区三模)设m∈R,在平面直角坐标系中,已知向量
a
=(x+
3
,my)
,向量
b
=(x-
3
,y)
a
b
,动点M(x,y)的轨迹为曲线E.
(I)求曲线E的方程,并说明该方程所表示曲线的形状;
(II) 已知m=
3
4
,F(0,-1),直线l:y=kx+1与曲线E交于不同的两点M、N,则△FMN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的实数k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山二模)已知向量
a
=(2x-3,1)
b
=(x,-2)
,若
a
b
≥0
,则实数x的取值范围是
(-∞,-
1
2
]∪[2,+∞)
(-∞,-
1
2
]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,4),
b
=(2,-1),λ为实数,若向量
a
b
与向量
b
垂直,则λ=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,1),
b
=(k,3),若
a
b
,则k=
 

查看答案和解析>>

同步练习册答案