((本小题满分14分)
如图,是圆的直径,点在圆上,,交于点,
平面,,.
(1)证明:;
(2)求平面与平面所成的锐二面角的余弦值.
解:(法一)(1)平面平面, .……………1分
又,
平面
而平面
. ………………………………………3分
是圆的直径,.
又,
.
平面,,
平面.
与都是等腰直角三角形.
.
,即(也可由勾股定理证得).………………………………5分
, 平面.
而平面,
. ………………………………………………………………………………6分
(2)延长交于,连,过作,连结.
由(1)知平面,平面,
.
而,平面.
平面,
,
为平面与平面所成的
二面角的平面角. ……………………8分
在中,,,
.
由,得.
.
又,
,则. ………………………………11分
是等腰直角三角形,.
平面与平面所成的锐二面角的余弦值为. ………………………12分
(法二)(1)同法一,得. ………………………3分
如图,以为坐标原点,垂直于、、所在的直线为轴建立空间直角坐标系.
由已知条件得,
. ………4分
由,
得, . ……………6分
(2)由(1)知.
设平面的法向量为,
由 得,
令得,, …………………………9分
由已知平面,所以取面的法向量为,
设平面与平面所成的锐二面角为,
则, …………………………11分
平面与平面所成的锐二面角的余弦值为. ……………………12分
【解析】略
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com