精英家教网 > 高中数学 > 题目详情
7.已知函数y=x3+3ax2+3bx+c在x=2处有极值,且其图象在x=1处切线斜率为-3
(1)求函数的单调区间;
(2)求函数的极大值与极小值的差.

分析 (1)求出y'=3x2+6ax+3b,由题意得12+12a+3b=0,且k=y′|x=1=3+6a+3b=-3,由此能求出a=-1,b=0,从而y=x3-3x2+c,则y'=3x2-6x,由此利用导数性质能求出函数的单调区间.
(2)由y'=3x2-6x=0,解得x=0,x=2,推导出函数在x=0时取得极大值c,在x=2时取得极小值c-4,从而能求出函数的极大值与极小值的差.

解答 解:(1)∵函数y=x3+3ax2+3bx+c,
∴y'=3x2+6ax+3b,
∵函数y=x3+3ax2+3bx+c在x=2处有极值,
∴当x=2时,y′=0,即12+12a+3b=0,①
∵函数图象在x=1处的切线与直线6x+2y+5=0平行,
∴k=y′|x=1=3+6a+3b=-3,②
联立①②,解得a=-1,b=0,
∴y=x3-3x2+c,则y'=3x2-6x,
令y'=3x2-6x>0,解得x<0或x>2,
令y'=3x2-6x<0,解得0<x<2,
∴函数的单调递增区间是(-∞,0),(2,+∞),单调递减区间是(0,2);
(2)由(1)可知,y'=3x2-6x,
令y′=0,即3x2-6x=0,解得x=0,x=2,
∵函数在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,
∴函数在x=0时取得极大值c,在x=2时取得极小值c-4,
∴函数的极大值与极小值的差为c-(c-4)=4.

点评 本题考查函数的单调区间的求法,考查函数的极大值与极小值的差的求法,是中档题,解题时要认真审题,注意导数性质及导数的几何意义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.某工厂为了了解工人文化程度与月收入的关系,随机调查了部分工人,得到如表:
文化程度与月收入列表   (单位:人)
月收入2000元以下月收入2000元及以上总计
高中文化以上104555
高中文化及以下203050
总计3075105
由上表中数据计算得K2=$\frac{{105×{{({10×30-20×45})}^2}}}{55×50×30×75}$≈6.1,则估计根据如表你认为有97.5%以上把握确认“文化程度与月收入有关系”.
P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
K0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点A(1,2)和直线l:x=-$\frac{1}{2}$,则抛物线y2=2x上一动点P到点A的距离和直线l的距离之和的最小值是$\frac{{\sqrt{17}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:?x∈R,${(\frac{1}{10})^{x-3}}$≤cos2.若(?p)∧q是假命题,则命题q可以是(  )
A.若-2≤m<0,则函数f(x)=-x2+mx在区间(-4,-1)上单调递增
B.“1≤x≤4”是“${log_{\frac{1}{5}}}$x≥-1”的充分不必要条件
C.x=$\frac{π}{3}$是函数f(x)=cos 2x-$\sqrt{3}$sin 2x的一条对称轴
D.若a∈[$\frac{1}{2}$,6),则函数f(x)=$\frac{1}{2}$x2-alnx在区间(1,3)上有极值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F为椭圆$\frac{x^2}{9}$+$\frac{y^2}{8}$=1右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|…组成公差为d的等差数列,则d的取值范围是$[-\frac{1}{10},0)∪(0,\frac{1}{10}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a,b为实数,则“3a<3b”是“$\frac{1}{|a|}$>$\frac{1}{|b|}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,则边长c=$\sqrt{30-4\sqrt{6}}$,其△ABC的面积为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在平面直角坐标系中有一个圆心在坐标原点,半径为c的圆,(a,b)为任一点.则如图所示的程序框图表示的算法的作用是判断点(a,b)与圆心在坐标原点,半径为c的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a>b>0,则下列不等式成立的是(  )
A.ln(a-b)>0B.$\frac{1}{a}<\frac{1}{b}$C.3a-b<1D.loga2<logb2

查看答案和解析>>

同步练习册答案