精英家教网 > 高中数学 > 题目详情
如图,四边形是正方形,

(Ⅰ)求证:平面平面
(Ⅱ)若所成的角为,求二面角的余弦值.
①见解析②

试题分析:(I)要证面面垂直,只要证明线面垂直,只要证明线线垂直:即找到直线(II)由于选取 为坐标原点建立空间直角坐标系,由于底面直角梯形只有上下底边的关系,直角腰边长 需要用 成 角这个等式确定的,进一步计算出多面体顶点坐标,利用空间向量计算出两个平面的法向量,再求二面角的余弦值.
试题解析:(I)平面,且平面

是正方形,,而梯形相交,
平面
平面
平面平面             4分

(II)平面,则

以点为原点,依次为轴,建立空间直角坐标系,
不妨设.

   .6分
, 
所成的角为

解得.    .8分
 
求得平面的一个法向量是
;    ..9分

求得平面的一个法向量是;    ..10分
,    ..11分
故二面角的余弦值为     .12分
(其他做法参照给分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,圆锥形封闭容器,高为h,圆锥内水面高为若将圆锥倒置后,圆锥内水面高为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱中,上的动点.

(1)求五面体的体积;
(2)当在何处时,平面,请说明理由;
(3)当平面时,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,AB=BC,,Q是AC上的点,AB1//平面BC1Q.

(Ⅰ)确定点Q在AC上的位置;
(Ⅱ)若QC1与平面BB1C1C所成角的正弦值为,求二面角Q-BC1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角的正弦值为,求六棱锥高的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面凸多面体的体积为的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中, 平面.
(Ⅰ)求证:平面
(Ⅱ)求棱锥的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正四棱锥的侧面积为,若

(1)求四棱锥的体积;
(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求证:BF⊥平面DAF;
(II)求多面体ABCDFE的体积。

查看答案和解析>>

同步练习册答案