精英家教网 > 高中数学 > 题目详情
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求证:BF⊥平面DAF;
(II)求多面体ABCDFE的体积。
(I)先证AD⊥B,AF⊥BF    (II)

试题分析:
(I)证明:因为平面ABCD⊥平面ABEF,AD⊥AB,
∴AD⊥平面ABEF,∴AD⊥BF;
又∵AB为圆O的直径,∴AF⊥BF,
AF∩AD=A,∴BF⊥平面DAF;   
(II)作为垂足,则
   
点评:本题考查的知识点是直线与平面所成的角,直线与平面平行的判定,直线与平面垂直的判定,其中(1)的关键是得到BF⊥AF,DA⊥BF.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形是正方形,

(Ⅰ)求证:平面平面
(Ⅱ)若所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知长方形ABCD中,AB=2,A1,B1分别是AD,BC边上的点,且AA1=BB1="1," E,F分别为B1D与AB的中点. 把长方形ABCD沿直线折成直角二面角,且.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=

(1)当时,求证:AO⊥平面BCD;
(2)当二面角的大小为时,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.

(Ⅰ)求证:C1B⊥平面A1B1C1
(Ⅱ)求A1B与平面ABC所成角的正切值;
(Ⅲ)若E为CC1中点,求二面角A—EB1—A1的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的平面,是不同的直线,则下列命题不正确的(    )
A.若B.若,则
C.若,则D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中,侧面是边长为2的正方形,的中点,在棱上.

(1)当时,求三棱锥的体积.
(2)当点使得最小时,判断直线是否垂直,并证明结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将4个半径都是的球体完全装入底面半径是的圆柱形桶中,则桶的最小高度是     

查看答案和解析>>

同步练习册答案