精英家教网 > 高中数学 > 题目详情
如图,正三棱柱中,侧面是边长为2的正方形,的中点,在棱上.

(1)当时,求三棱锥的体积.
(2)当点使得最小时,判断直线是否垂直,并证明结论.
(1),(2)垂直,利用线面垂直证明线线垂直

试题分析:(1)因为侧面是边长为2的正方形,


(2)解法1:将侧面展开到侧面得到矩形,连结,交于点,此时点使得最小.此时平行且等于的一半,的中点.连接
中,
中,
在等腰中,
所以由有勾股定理知

解法2:将侧面展开到侧面得到矩形,连结,交于点,此时点使得最小.此时平行且等于的一半,的中点.过点,连接,由知四边形所以.在正三棱柱中知,而,所以.

点评:以棱锥为载体考查立体几何中的线面、面面、点面位置关系或体积是高考的亮点,掌握其判定性质及定理,是解决此类问题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,四棱锥中,底面是边长为4的正方形,的交点,平面是侧棱的中点,异面直线所成角的大小是60.

(Ⅰ)求证:直线平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正四棱锥的侧面积为,若

(1)求四棱锥的体积;
(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求证:BF⊥平面DAF;
(II)求多面体ABCDFE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.

(1)求证:GH∥平面CDE;
(2)若,求四棱锥F-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体中,面中心为

(1)求证:
(2)求异面直线所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形中,为正三角形,交于点.将沿边折起,使点至点,已知与平面所成的角为,且点在平面内的射影落在内.

(Ⅰ)求证:平面
(Ⅱ)若已知二面角的余弦值为,求的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,四棱锥的底面是正方形,侧棱与底面边长均为2,则其侧视图的面积为_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于任意的直线与平面,在平面内必有直线,使(     )
A.平行B.相交C.垂直D.互为异面直线

查看答案和解析>>

同步练习册答案