精英家教网 > 高中数学 > 题目详情
a=
2
2
(sin56°-cos56°)
,b=cos50°cos128°+cos40°cos38°,c=
1
2
(cos80°-2cos250°+1)
,则a、b、c的大小关系为
b>a>c
b>a>c
分析:把a的式子去掉括号后,利用特殊角的三角函数值及两角差的正弦函数公式化简得到sin11°;把b中的第一项利用诱导公式化简后与第二项利用两角差的正弦函数公式化简得到sin12°;把c中的cos80°利用二倍角的余弦函数公式化简,cos50°利用诱导公式化为sin40°,然后利用两角和的余弦函数公式及诱导公式化简可得sin10°,然后利用正弦函数在(0,90°)为单调增函数即可比较出大小.
解答:解:由于a=
2
2
(sin56°-cos56°)
=sin(56°-45°)=sin11°,
b=cos50°cos128°+cos40°cos38°=-sin40°cos52°+cos40°sin52°=sin(52°-40°)=sin12°,
c=
1
2
(cos80°-2cos250°+1)
=
1
2
(2cos240°-2sin240°)=cos80°=sin10°,
且函数y=sinx在(0°,90°)上单调递增,
∴a、b、c的大小关系为b>a>c
故答案为 b>a>c
点评:本题是一道考查三角函数恒等变形的综合题,解题的思路是把各项都化为锐角的正弦.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a=
2
2
(cos18°-sin18°)
,b=2cos228°-1,c=2sin16°cos16°,则a、b、c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
2
2
(sin56°-cos56°),b=cos50°cos128°+cos40°cos38°,c=
1-tan240°30′
1+tan240°30′
,d=
1
2
(cos80°-2cos250°+1),则a,b,c,d的大小关系为(  )
A、a>b>d>c
B、b>a>d>c
C、d>a>b>c
D、c>a>d>b

查看答案和解析>>

科目:高中数学 来源: 题型:

a=
2
2
(cos18°-sin18°)
,b=2cos228°-1,c=2sin16°cos16°,则a、b、c的大小关系是(  )
A、b<c<a
B、b>c>a
C、a<b<c
D、c<a<b

查看答案和解析>>

同步练习册答案