精英家教网 > 高中数学 > 题目详情

【题目】已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=| ﹣lnx|+lnx,其中e为自然对数的底数.
(1)若a=﹣ ,求函数f(x)的单调区间;
(2)证明:当a∈(2,+∞)时,f′(x﹣1)>g(x)+a.

【答案】
(1)解:当a=﹣ ,f(x)=ex﹣e2x,x∈(1,+∞),

f′(x)=ex﹣e2

当x∈(1,2)时,f′(x)<0,f(x)在(1,2)上单调递减;

当x∈(1,+∞)时,f′(x)>0,f(x)在(2,+∞)上单调递增


(2)证明: x∈(1,+∞),f′(x﹣1)=ex1+2a,

g(x)=| ﹣lnx|+lnx=

①1<x<e时,证明当a∈(2,+∞)时,f′(x﹣1)>g(x)+a,

即证明:ex1+2a> +a,a>2,

即a> ﹣ex1

只需证明h(x)= ﹣ex1≤2在(1,e)恒成立即可,

h′(x)=﹣ ﹣ex1<0,h(x)在(1,e)递减,

h(x)最大值=h(1)=e﹣1<2,

∴a> ﹣ex1

∴1<x<e时,当a∈(2,+∞)时,f′(x﹣1)>g(x)+a;

②x≥e时,证明当a∈(2,+∞)时,f′(x﹣1)>g(x)+a,

即证明:ex1+2a>2lnx﹣ +a,a>2,

令m(x)=ex1﹣2lnx+ +a,(a>0,x≥e),

m′(x)=﹣ +ex1,显然m′(x)在[e,+∞)递增,

而m′(e)= ≈0,m′(3)≈6,

近似看成m(x)在[e,+∞)递增,

∴m(x)>m(x0)≈m(e)=ee1+a﹣1>ee1+1>0,

综上,当a∈(2,+∞)时,f′(x﹣1)>g(x)+a


【解析】(1)把a=﹣ 代入函数解析式,求出函数的导函数由导函数的符号求得函数的单调区间;(2)求出f′(x﹣1)的表达式以及g(x)的分段函数,通过讨论1<x<e和 x≥e的范围分别证明得答案.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正项等比数列{an},若2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+log3a3+…log3an , 求数列{ }的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(1)求k的取值范围;
(2)是否存在常数k,使得向量 共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=9A(-5,0)直线l:x-2y=0.

(1)求与圆C相切且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点)存在定点B(不同于点A)满足:对于圆C上任一点P都有一常数,试求所有满足条件的点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,O在平面内,AB是O的直径,平面,C为圆周上不同于A、B的任意一点,M,N,Q分别是PA,PC,PB的中点.

(1)求证:平面

(2)求证:平面平面

(3)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (x>0),观察:
f1(x)=f(x)=
f2(x)=f(f1(x))=
f3(x)=f(f2(x))=
f4(x)=f(f3(x))=

根据以上事实,当n∈N*时,由归纳推理可得:fn(1)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图:
附:临界值参考公式: ,n=a+b+c+d.

(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民损款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,投抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

30

损款不超过500元

6

合计

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知点A(-1,-2),B(1,3),P为x轴上的一点,求|PA|+|PB|的最小值;

(2)已知点A(2,2),B(3,4),P为x轴上一点,求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为 (θ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标方程.
(1)求曲线C的极坐标方程;
(2)若直线l:θ=α(α∈[0,π),ρ∈R)与曲线C相交于A,B两点,设线段AB的中点为M,求|OM|的最大值.

查看答案和解析>>

同步练习册答案