精英家教网 > 高中数学 > 题目详情
20.空间中,设m,n表示直线,α,β,γ表示平面,则下列命题正确的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若m⊥α,m⊥β,则α∥βC.若m⊥β,α⊥β,则m∥αD.若n⊥m,n⊥α,则m∥α

分析 本题研究线线、线面、面面之间的位置关系,A,B两个选项研究面面之间的位置关系,B、D选项研究线面之间的位置关系,对四个选项依次用相关的知识判断其正误即可.

解答 解:对于A选项,若α⊥γ,β⊥γ,则α∥β,不正确,在此条件下,两平面α,β可以相交,
对于B选项,若 m⊥α,m⊥β,则 α∥β,根据垂直于同一条直线的两个平面平行,正确,
对于C选项,m⊥β,α⊥β,则 m∥α,同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行,故C不正确,
对于D选项,n⊥m,n⊥α,则 m∥α,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行,故D不正确.
故选B.

点评 本题考点是命题的真假判断与应用,考查综合利用平面的基本性质来判断线线之间,线面之间,面面之间的位置关系,属于基本题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数y=-1+loga(x+3)(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则$\frac{1}{m}+\frac{2}{n}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.复数z满足$\frac{z}{1+2i}$=1-2i(i是虚数单位),则z的虚部是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow{b}$=(y,2),若向量$\overrightarrow{a}$,$\overrightarrow{b}$同向,则x+y的最小值为(  )
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设数列{an}是等比数列,公比q=2,Sn为{an}的前n项和,记Tn=$\frac{9{S}_{n}-{S}_{2n}}{{a}_{n+1}}$(n∈N*),则数列{Tn}最大项的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦点坐标为(  )
A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-3).若($\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=\frac{1}{{\sqrt{6-x-{x^2}}}}$的定义域为(  )
A.[-3,2]B.[-3,2)C.(-3,2)D.(-3,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系x0y中,以0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为$ρcos(θ-\frac{π}{3})=1$,M,N分别为C与x轴,y轴的交点.(0≤θ<2π)
(1)写出C的直角坐标方程;
(2)设线段MN的中点为P,求直线OP的极坐标方程.

查看答案和解析>>

同步练习册答案