精英家教网 > 高中数学 > 题目详情
已知椭圆C:经过点,则m=    ,离心率e=   
【答案】分析:先把参数方程化为普通方程,求出 a、b、c、的值,把点 代入椭圆的方程,求出m值.
解答:解:椭圆C: 即  ,a=2,b=1,c=1,
把点 代入椭圆的方程可得,=1,m=±
e==
故答案为±
点评:本题考查把参数方程化为普通方程的方法,椭圆的简单性质的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题15分)

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G: 是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.

(1)若椭圆C经过两点,求椭圆C的方程;

(2)当为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);

(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省丹东市四校协作体高三摸底(零诊)数学试卷(文科)(解析版) 题型:解答题

已知椭圆C:经过点,一个焦点是F(0,1).
(I)求椭圆C的方程;
(II)设椭圆C与y轴的两个交点为A1、A2,不在y轴上的动点P在直线y=a2上运动,直线PA1、PA2分别与椭圆C交于点M、N,证明:直线MN经过焦点F.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省泰州市姜堰市蒋垛中学高三(下)3月综合测试数学试卷(解析版) 题型:解答题

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州市高考数学三模试卷(解析版) 题型:解答题

已知椭圆C:,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

同步练习册答案