精英家教网 > 高中数学 > 题目详情
已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点.
(1)求证:OA⊥OB;
(2)当△OAB的面积等于
10
时,求k的值.
分析:(1)证明OA⊥OB可有两种思路:①证kOA•kOB=-1;②取AB中点M,证|OM|=
1
2
|AB|.
(2)求k的值,关键是利用面积建立关于k的方程,求△AOB的面积也有两种思路:①利用S△OAB=
1
2
|AB|•h(h为O到AB的距离);②设A(x1,y1)、B(x2,y2),直线和x轴交点为N,利用S△OAB=
1
2
|AB|•|y1-y2|.
解答:解:(1)由方程y2=-x,y=k(x+1)
消去x后,整理得
ky2+y-k=0.
设A(x1,y1)、B(x2,y2),由韦达定理y1•y2=-1.
∵A、B在抛物线y2=-x上,
∴y12=-x1,y22=-x2,y12•y22=x1x2
∵kOA•kOB=
y1
x1
y2
x2
=
y1y2
x1x2
=
1
y1y2
=-1,
∴OA⊥OB.
(2)设直线与x轴交于N,又显然k≠0,
∴令y=0,则x=-1,即N(-1,0).
∵S△OAB=S△OAN+S△OBN
=
1
2
|ON||y1|+
1
2
|ON||y2|
=
1
2
|ON|•|y1-y2|,
∴S△OAB=
1
2
•1•
(y1+y2)2-4y1y2

=
1
2
(
1
k
)
2
+4

∵S△OAB=
10

10
=
1
2
1
k2
+4
.解得k=±
1
6
点评:本题考查的知识点是直线与圆锥曲线的关系,抛物线的应用,其中联立方程、设而不求、韦达定理三者综合应用是解答此类问题最常用的方法,但在解方程组时,是消去x还是消去y,这要根据解题的思路去确定.当然,这里消去x是最简捷的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点,则△AOB的形状是
直角三角形
直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.
(1)求证:OA⊥OB;
(2)当三角形OAB面积等于
10
时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=x,则过P(1,1)与抛物线有且只有一个交点的直线有(  )条.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区一模)如图,已知抛物线y2=x及两点A1(0,y1)和A2(0,y2),其中y1>y2>0.过A1,A2分别作y轴的垂线,交抛物线于B1,B2两点,直线B1B2与y轴交于点A3(0,y3),此时就称A1,A2确定了A3.依此类推,可由A2,A3确定A4,….记An(0,yn),n=1,2,3,….
给出下列三个结论:
①数列{yn}是递减数列;
②对?n∈N*,yn>0;
③若y1=4,y2=3,则y5=
23

其中,所有正确结论的序号是
①②③
①②③

查看答案和解析>>

同步练习册答案