精英家教网 > 高中数学 > 题目详情
设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值
3
2
a
;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1,d2,d3,d4,则有d1+d2+d3+d4为定值
 
分析:这是一个升维类比,线类比为面,点到直线的距离类比为点到平面的距离,面积类比为体积即可.
解答:精英家教网解:由于等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值
3
2
a

证明如下:如图,△ABC是等边三角形,点P是等边三角形内部任一点.
S△APB=
1
2
a•PE,S△CPB=
1
2
a•PE,S△APC=
1
2
a•PG,
于是S△APB+S△CPB+S△APC=
1
2
a•PE+
1
2
a•PF+
1
2
a•PG,
1
2
a•PE+
1
2
a•PF+
1
2
a•PG=S,
PE+PF+PG=
2S
a
,为定值.
即d1+d2+d3=
2S
a
,为定值.
由线类比为面,点到直线的距离类比为点到平面的距离,面积类比为体积得到:
有d1+d2+d3+d4为定值
6
3
a.
故答案为:
6
3
a.
点评:升维类比是一种比较重要的类比方式,要掌握好其类比规则,对于类比还有一点要注意,那就是类比的结论不一定是正确的
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等边△ABC的边长为a,P是△ABC内任意一点,且P到三边AB、BC、CA的距离分别为d1、d2、d3,则有d1+d2+d3为定值
3
2
a;由以上平面图形的特性类比到空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内任意一点,且P到平面ABC、平面ABD、平面ACD、平面BCD的距离分别为h1、h2、h3、h4,则有h1+h2+h3+h4为定值
6
3
a
6
3
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值
3
2
a
;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1,d2,d3,d4,则有d1+d2+d3+d4为定值______.

查看答案和解析>>

科目:高中数学 来源:2008年江苏省南通市通州区兴仁中学高二期末数学模拟试卷(解析版) 题型:填空题

设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1,d2,d3,d4,则有d1+d2+d3+d4为定值   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三数学填空题专练7(解析版) 题型:解答题

设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1,d2,d3,d4,则有d1+d2+d3+d4为定值   

查看答案和解析>>

同步练习册答案