精英家教网 > 高中数学 > 题目详情
(2012•杭州二模)(理)设整数m是从不等式x2-2x-8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望Eξ=
5
5
分析:先解不等式x2-2x-8≤0的整数解的集合S,再由随机变量ξ=m2,求出分布列,用公式求出期望.
解答:解:由x2-2x-8≤0得-2≤x≤4,符合条件的整数解的集合S={-2,-1,0,1,2,3,4}
∵ξ=m2,故变量可取的值分别为0,1,4,9,16,
相应的概率分别为
1
7
2
7
2
7
1
7
1
7

∴ξ的数学期望Eξ=0×
1
7
+1×
2
7
+4×
2
7
+9×
1
7
+16×
1
7
=
35
7
=5
故答案为:5.
点评:本题的考点是离散型随机变量的期望与方差,主要考查随机变量的期望与方差,解题的关键是理解所研究的事件类型确定求概率的方法,有公式求出概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•杭州二模)如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′-ABCM.
(Ⅰ)求证:AM⊥D′F;
(Ⅱ)若∠D′EF=
π
3
,直线D'F与平面ABCM所成角的大小为
π
3
,求直线AD′与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则a=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)双曲线
x2
a2
-
y2
b2
=1(a>0 b>0)
的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知正三棱柱ABC-A′B′C′的正视图和侧视图如图所示.设△ABC,△A′B′C′的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S,则S的最大值为
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)若全集U={1,2,3,4,5},CUP={4,5},则集合P可以是(  )

查看答案和解析>>

同步练习册答案