精英家教网 > 高中数学 > 题目详情

【题目】设函数 . (I)求 的值;
(II)若f(a)>f(﹣a),求实数a的取值范围.

【答案】解:(Ⅰ)f(﹣ )=log0.5 )=2,f(2)=log22=1,∴ =1,
(Ⅱ)当x>0时,f(x)=log2x,函数为增函数,
当x<0时,f(x)=log0.5(﹣x),函数也为增函数,
∵f(a)>f(﹣a),
当a>0时,则log2a>log0.5a=log2 ,即a> ,解得a>1,
当a<0时,则log0.5(﹣a)=log2(﹣a)即log2 >log2(﹣a),即﹣ >﹣a,解得﹣1<a<0
综上所述实数a的取值范围(﹣1,0)∪(1,+∞)
【解析】(Ⅰ)根据分段函数的解析,代值计算即可,(Ⅱ)对a进行分类讨论,即可求出a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查了50人,并将调查情况进行整理后制成下表:

(1)规定:年龄在内的为青年人,年龄在内的为中年人,根据以上统计数据填写下面列联表:

(2)能否在犯错误的概率不超过0.025的前提下,认为赞成“车辆限行”与年龄有关?

参考公式和数据: ,其中.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数存在两个极值点.

(Ⅰ)求实数a的取值范围;

(Ⅱ)设分别是的两个极值点且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ) 当a=-1时,求证:

(Ⅱ) 对任意,存在,使成立,求a的取值范围.

(其中e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数).

(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;

(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在区间(0,+∞)上的增函数,f(2)=1,且对于任意a,b∈(0,+∞), 恒成立. (I)求f(8);
(II)求不等式 的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在 上的值域是 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆 的左右焦点分别作直线 交椭圆于,且.

(1)求证:当直线的斜率与直线的斜率都存在时, 为定值;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形ABC所在平面与梯形BCDE所在平面垂直,,=4 ,,F为棱AE的中点.

(1)求证:平面平面

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案