精英家教网 > 高中数学 > 题目详情

将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他3个盒子中球的颜色齐全的不同放法共有        种.(用数字作答)

 

【答案】

720

【解析】

试题分析:本题可以分步来做:

第一步:首先从4个盒子中选取3个,共有4种取法;

第二步:假定选取了前三个盒子,则第四个为空,不予考虑。由于前三个盒子中的球必须同时包含黑白红三色,所以我们知道,每个盒子中至少有一个白球,一个黑球和一个红球。

第三步:①这样,白球还剩一个可以自由支配,它可以放在三个盒子中任意一个,共3种放法。②黑球还剩两个可以自由支配,这两个球可以分别放入三个盒子中的任意一个,这里有两种情况:一是两个球放入同一个盒子,有3种放法;二是两个球放入不同的两个盒子,有3种放法。综上,黑球共6种放法。③红球还剩三个可以自由支配,分三种情况:一是三个球放入同一个盒子,有3中放法。二是两个球放入同一个盒子,另外一个球放入另一个盒子,有6种放法。三是每个 盒子一个球,只有1种放法。综上,红球共10种放法。

所以总共有4×3×6×10=720种不同的放法。

考点:排列、组合;分布乘法原理;分类加法原理。

点评:本题考查排列、组合的运用,注意本题中同色的球是相同的。对于较难问题,我们可以采取分步来做。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中球数不能少于2个,那么所有不同的放法的种数为
18

查看答案和解析>>

科目:高中数学 来源: 题型:

7、将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又有黑球,且每个盒子中球数不能少于2个,则所有不同的放法的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他3个盒子中球的颜色齐全的不同放法共有
720
720
种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)将4个相同的白球和5个相同的黑球全部 放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只 放入2个白球和2个黑球,则所有不同的放法种数为(  )

查看答案和解析>>

科目:高中数学 来源:正定中学2010高三下学期第一次考试(数学理) 题型:选择题

将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,

又要有黑球,且每个盒子中球数不能少于2个,则所有不同的放法的种数为(   )

A.12                     B.3                   C.18                  D.6

 

查看答案和解析>>

同步练习册答案