精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+e-2x没有极值点,则实数a的取值范围是
 
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:由f′(x)=a-2e-2x,利用导数性质能求出实数a的取值范围.
解答: 解:∵f(x)=ax+e-2x
∴f′(x)=a-2e-2x
∵函数f(x)=ax+e-2x没有极值点,
∴a≤0.
故答案为:(-∞,0].
点评:本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c是互不相等的正数,求证:
(Ⅰ)a4+b4+c4>abc(a+b+c);
(Ⅱ)
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图给出的是计算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一个程序框图,判断其中框内应填入的条件是(  )
A、i>10B、i<10
C、i>20D、i<20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题正确的个数是(  )
①若
a
b
=0,则
a
=
0
b
=
0

②(
a
b
)•
c
=
a
•(
b
c
);
③若
a
b
=
b
c
b
0
),则
a
=
c

a
b
=
b
a

⑤若
a
b
不共线,则
a
b
的夹角为锐角.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
满足:|
b
|=2|
a
|=2
a
b
=2,若
c
-
a
c
-
b
的夹角为
π
2
,则(
c
a
max=(  )
A、
3
2
B、
1+
3
2
C、1+
3
2
D、1+
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-mx(m∈R),e为自然对数的底数.
(1)讨论函数f(x)在区间(e,+∞)上的单调性,并求出极值.
(2)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是锐角,则下列各式成立的是(  )
A、sinα+cosα=
1
2
B、sinα+cosα=1
C、sinα+cosα=
4
3
D、sinα+cosα=
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex+x-1(x<0)
-
1
3
x3+2x(x≥0)
,给出如下四个命题:
①f(x)在[
2
,+∞)上是减函数;②f(x)的最大值是2;
③函数f(x)=sint有两个零点;④f(x)≤
4
3
2
在R上恒成立.
其中正确的命题有
 
.(把正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:
(1)PA∥平面BDE;
(2)平面BDE⊥平面ABCD.

查看答案和解析>>

同步练习册答案