精英家教网 > 高中数学 > 题目详情
9.已知四面体ABCD的顶点都在球O表面上,且AB=BC=AC=2$\sqrt{2}$,DA=DB=DC=2,过AD作相互垂直的平面α、β,若平面α、β截球O所得截面分别为圆M、N,则(  )
A.MN的长度是定值$\sqrt{2}$B.MN长度的最小值是2
C.圆M面积的最小值是2πD.圆M、N的面积和是定值8π

分析 确定DA、DB、DC两两互相垂直,M,N分别是AB,AC的中点,即可得出结论.

解答 解:∵AB=BC=AC=2$\sqrt{2}$,DA=DB=DC=2,
∴DA、DB、DC两两互相垂直,
过AD作相互垂直的平面α、β,若平面α、β截球O所得截面分别为圆M、N,则M,N分别是AB,AC的中点,MN=$\frac{1}{2}$BC=$\sqrt{2}$,
故选A.

点评 本题考查球的内接几何体,考查学生分析解决问题的能力,确定DA、DB、DC两两互相垂直,M,N分别是AB,AC的中点是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x+xlnx,若m∈Z,且(m-2)(x-2)<f(x)对任意的x>2恒成立,则m的最大值为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,存在单位向量$\overrightarrow{e}$,使得($\overrightarrow{a}$-$\overrightarrow{e}$)•($\overrightarrow{b}$-$\overrightarrow{e}$)=0,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围是[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是定义在R上的偶函数,且在(0,+∞)上单调递增,若对于任意x∈R,$f({{{log}_2}a})≤f({{x^2}-2x+2})$恒成立,则a的取值范围是(  )
A.(0,1]B.$[{\frac{1}{2},2}]$C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某隧道截面如图,其下部形状是矩形ABCD,上部形状是以CD为直径的半圆.已知隧道的横截面面积为4+π,设半圆的半径OC=x,隧道横截面的周长(即矩形三边长与圆弧长之和)为f(x).
(1)求函数f(x)的解析式,并求其定义域;
(2)问当x等于多少时,f(x)有最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某班主任为了对本班学生的数学和物理成绩进行分析,随机抽取了8位学生的数学和物理成绩如下表.
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
(Ⅰ)通过对样本数据进行初步处理发现,物理成绩y与数学成绩x之间具有线性相关性,求y与x的线性回归方程(系数精确到0.01).
(Ⅱ)当某学生的数学成绩为100分时,估计该生的物理成绩.(精确到0.1分)
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
参考数据:$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面向量$\overrightarrow{a}$=(4sin(π-α),$\frac{3}{2}$),$\overrightarrow{a}$=(cos$\frac{π}{3}$,cosα),$\overrightarrow{a}$⊥$\overrightarrow{b}$.
(Ⅰ)求tanα的值;
(Ⅱ)求$\frac{1}{1+sinαcosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足an+1-an=2,a1=-5,则|a1|+|a2|+…+|a6|=(  )
A.9B.15C.18D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若点P为抛物线$C:{x^2}=\frac{1}{2}y$上的动点,F为抛物线C的焦点,则|PF|的最小值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案