精英家教网 > 高中数学 > 题目详情
若直线y=x-b与曲线
x=2+cosθ
y=sinθ
(θ∈[0,2π))有两个不同的公共点,则实数b的取值范围为(  ).
A.(2-
2
,1)
B.[2-
2
,2+
2
]
C.(-∞,2-
2
)∪(2+
2
,+∞)
D.(2-
2
,2+
2
)
x=2+cosθ
y=sinθ
化为普通方程(x-2)2+y2=1,表示圆,
因为直线与圆有两个不同的交点,所以
|2-b|
2
<1
解得2-
2
<b<2+
2

法2:利用数形结合进行分析得|AC|=2-b=
2
,∴b=2-
2

同理分析,可知2-
2
<b<2+
2

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若(x,y)与(ρ,θ)(ρ∈R)分别是点M的直角坐标和极坐标,t表示参数,则下列各组曲线:
①θ=
n
6
和sinθ=
1
2

②θ=
n
6
和tanθ=
3
3

③ρ2-9=0和ρ=3;
x=2+
2
2
t
y=3+
1
2
t
x=2+
2
t
y=3+
1
2
t

其中表示相同曲线的组数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:x2+y2=4,直线L过点P(-1,-2),倾斜角为30°,
(Ⅰ)求直线L的标准参数方程;
(Ⅱ)求曲线C的参数方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4-4:极坐标系与参数方程
已知曲线C1
x=-4+cost
y=3+sint
(t为参数),C2
x=8cosθ
y=3sinθ
(θ为参数).
(1)化C1,C2的方程为普通方程;
(2)若C1上的点P对应的参数为t=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
(t为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l:
x=2+t
y=-2-t
(t为参数)与圆C:
x=2cosθ+1
y=2sinθ
(θ为参数),则直线l的倾斜角及圆心C的直角坐标分别是(  )
A.
π
4
,(1,0)
B.
π
4
,(-1,0)
C.
4
,(1,0)
D.
4
,(-1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C1的参数方程为
x=-2+
10
cosθ
y=
10
csinθ
(θ为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ.
(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;
(2)曲线C1,C2是否相交,若相交请求出公共弦的长,若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P(x,y)在曲线 (θ为参数,θ∈R)上,则的取值范围是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l经过点P(1,1),倾斜角α=.
(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两条曲线的极坐标方程分别为,它们相交于A,B两点,则线段AB的长为(   )
A.B.C.2D.1

查看答案和解析>>

同步练习册答案