精英家教网 > 高中数学 > 题目详情

【题目】某医药研究所开发一种新药, 成年人按规定的剂量服用后, 每毫升血液中的含药量(微克)与时间(小时)之间关系满足如图所示的曲线.

(1)写出关于的函数关系式:

(2)据进一步测定: 每毫升血液中的含药量不少于微克时, 治疗疾病有效. 求服药一次后治疗疾病有效的时间.

【答案】(1)f(t)=;(2)小时.

【解析】

(1)分别代入从而可得之间的函数关系式;(2)时,由,得;当时,由,由此能求出服药一次治疗疾病的有效时间.

(1)将t = 1, y = 4分别代入y = kt, y =, 得k = 4, a = 3, ∴f(t) =.

(2)当时,由,得;当时,由

因此, 服药一次后治疗疾病有效的时间为 (小时).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且
(1)求角C的值;
(2)设函数 ,图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).
(1)求V关于α的函数关系式;
(2)当α为何值时,V取得最大值;
(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个工厂生产某种产品的固定成本(固定投入)为元,已知每生产件这样的产品需要再增加成本(元).已知生产出的产品都能以每件元的价格售出.

)将该厂的利润(元)表示为产量(件)的函数.

)要使利润最大,该厂应生产多少件这样的产品?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=
(1)用直尺或三角板画出y=f(x)的图象;
(2)求f(x)的最小值和最大值以及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx+c(a≠0)经过点(﹣1,0),(0,0),(1,2).
(1)求f(x)的解析式;
(2)若数列{an}的前n项和Sn满足Sn=f(n),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中在 上为减函数的是(
A.y=2cos2x﹣1
B.y=﹣tanx
C.
D.y=sin2x+cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,则下列命题正确的是 ( )

A. 垂直于同一平面,则平行

B. ,则

C. 不平行,则在内不存在与平行的直线

D. 不平行,则不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.

(1)求证:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

同步练习册答案