精英家教网 > 高中数学 > 题目详情
设全集为R,集合A={x|
2
x-1
≥1
},B={x|x2>4},则(CRB)∩A=(  )
分析:求出集合A和集合B中不等式的解集,确定出两集合,由全集为R,找出不属于B的部分,确定出集合B,找出A与B补集的公共部分,即可确定出所求的集合.
解答:解:由集合A中的不等式
2
x-1
≥1,变形得:
x-3
x-1
≤0,
解得:1<x≤3,
∴集合A={x|1<x≤3},
由集合B中的不等式x2>4,解得:x>2或x<-2,
∴集合B={x|x>2或x<-2},又全集为R,
∴CRB={x|-2≤x≤2},
则(CRB)∩A={x|1<x≤2}.
故选C
点评:此题属于以其他不等式与一元二次不等式的解法为平台,考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集为R,集合A={x|-1<x<1},B={x|x≥0},则?R(A∪B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|y=
1-x
},B={y|y=2-x,x∈R}
,则图中阴影部分表示的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设全集为R,集合A={x|3≤x<7},集合B={x|2<x<8},求(CRA)∩B.
(2)已知集合A={x|x2-x-2=0},B={x|ax-1=0},若A∪B=A,求实数a的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|x2+3x-4>0,x∈R},B={x|x2-x-6<0,x∈R}.
求(1)A∩B;(2)CR(A∩B);(3)A∪CRB.

查看答案和解析>>

同步练习册答案