精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点A(1,3),AB边上的中线CM所在直线方程为2x-3y+2=0,AC边上的高BH所在直线方程为2x+3y-9=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.
分析:(1)先求直线AC的方程,然后求出C的坐标.
(2)设出B的坐标,求出M代入直线方程为2x-3y+2=0,与直线为2x+3y-9=0.联立求出B的坐标然后可得直线BC的方程.
解答:解(1)由A(1,3)及AC边上的高BH所在的直线方程2x+3y-9=0
得AC所在直线方程为3x-2y+3=0
又AB边上的中线CM所在直线方程为2x-3y+2=0
3x-2y+3=0
2x-3y+2=0
得C(-1,0)
(2)设B(a,b),又A(1,3)M是AB的中点,则M(
a+1
2
b+3
2
)

由已知得
2a+3b-9=0
2•
a+1
2
-3•
b+3
2
+2=0
得B(3,1)
又C(-1,0)得直线BC的方程为x-4y+1=0
点评:本题考查两条直线的交点,待定系数法求直线方程,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xoy中,已知△ABC的顶点A(-1,0)和C(1,0),顶点B在椭圆
x2
4
+
y2
3
=1
上,则
sinA+sinC
sinB
的值是(  )
A、
3
2
B、
3
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(2,8),B(-4,0),C(6,0),
(1)求直线AB的斜率; 
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足|AC|+|BC|=
54
|AB|
,求点C的轨迹方程,并说明它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,-4),B(0,4),且4(sinB-sinA)=3sinC,则顶点C的轨迹方程是
y2
9
-
x2
7
=1
(y>3)
y2
9
-
x2
7
=1
(y>3)

查看答案和解析>>

同步练习册答案