精英家教网 > 高中数学 > 题目详情

已知F1(-1,0)、F2(1,0),圆F2:(x-1)2+y2=1,一动圆在y轴右侧与y轴相切,同时与圆F2相外切,此动圆的圆心轨迹为曲线C,曲线E是以F1,F2为焦点的椭圆.
(Ⅰ)求曲线C的方程;
(Ⅱ)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;
(Ⅲ)在(Ⅰ)、(Ⅱ)的条件下,直线l与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线l的斜率k的取值范围.

解:(Ⅰ)设动圆圆心的坐标为(x,y)(x >0)               
因为动圆在y轴右侧与y轴相切,同时与圆F2相外切,所以
,化简整理得y2=4x,
曲线C的方程为y2=4x(x >0);
(Ⅱ)依题意,c=1,, 可得, 
,
又由椭圆定义得.   
∴b2=a2-c2=3,
所以曲线E的标准方程为
(Ⅲ)设直线l与椭圆E交点,A,B的中点M的坐标为
将A,B的坐标代入椭圆方程中,得
两式相减得
,                                       
∵y02=4x0,∴直线AB的斜率, 
由(Ⅱ)知,∴

由题设
, 
.                  

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-
3
,0),F2(
3
,0)
,点P满足|
PF
1
|+|
PF
2
|=4
,记点P的轨迹为E,
(1)求轨迹E的方程;
(2)如果过点Q(0,m)且方向向量为
c
=(1,1)的直线l与点P的轨迹交于A,B两点,当
OA
OB
=0
时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线г.
(Ⅰ)求曲线г的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线г包围的范围内?说明理由.
(说明:点在曲线г包围的范围内是指点在曲线г上或点在曲线г包围的封闭图形的内部.)
(Ⅲ)设Q是曲线г上的一点,过点Q的直线l 交 x 轴于点F(-1,0),交 y 轴于点M,若|
MQ
|=2|
QF
|
,求直线l 的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线Γ包围的范围内?说明理由.
(注:点在曲线Γ包围的范围内是指点在曲线Γ上或点在曲线Γ包围的封闭图形的内部)
(Ⅲ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且
OA
+
OB
+
OC
=
0
.试探究:直线AB与OC的斜率之积是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)已知F1(-
2
,0)
F2(
2
,0)
,点T(x,y)满足|
TF1
|+|
TF2
|=4
,O为直角坐标原点,
(1)求点T的轨迹方程Γ;
(2)过点(0,1)且以(2,
2
)
为方向向量的一条直线与轨迹方程Γ相交于点P,Q两点,OP,OQ所在的直线的斜率分别是kOP、kOQ,求kOP•kOQ的值.

查看答案和解析>>

同步练习册答案