精英家教网 > 高中数学 > 题目详情
(2011•奉贤区二模)已知F1(-
2
,0)
F2(
2
,0)
,点T(x,y)满足|
TF1
|+|
TF2
|=4
,O为直角坐标原点,
(1)求点T的轨迹方程Γ;
(2)过点(0,1)且以(2,
2
)
为方向向量的一条直线与轨迹方程Γ相交于点P,Q两点,OP,OQ所在的直线的斜率分别是kOP、kOQ,求kOP•kOQ的值.
分析:(1)由题意可知点T的轨迹是以F1、F2为焦点的椭圆,其中 a=2,c=
2
,b=
a2-c2
=2,由此能够推导出点T的轨迹方程.
(2)先求出直线L的方程,与椭圆方程联立求出x1x2以及y1y2=-
1
2
代入kOP•kOQ即可得到结论.
解答:解:(1)∵|
TF1
|+|
TF2
|=4
>|F1F2|=2
2

∴点T的轨迹是以F1、F2为焦点的椭圆,
其中 a=2,c=
2
,b=
a2-c2
=2,
故点T的轨迹方程为
x2
4
+
y2
2
=1
(6分)
(2)直线L的斜率k=
2
2
(7分)
设直线L的方程:y=
2
2
x+1
(8分)
联立
x2
4
+
y2
2
=1
y=
2
2
x+1
消去y得:x2+
2
x-1=0
所以x1x2=-1,(10分)
同法消去x得:2y2-2y-1=0,所以y1y2=-
1
2
(12分)
∴KOP•KOQ=
y1y2
x1x2
=
1
2
.(16分)
点评:本题综合考查椭圆的性质及其应用和直线与椭圆的位置关系,难度较大,解题时要认真审题,仔细解答,避免出现不必要的错误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文) 如图都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位.依此规律,则第n个图形的表面积是
3n(n+1)
3n(n+1)
个平方单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)已知|
a
|=|
b
|=2,
a
b
的夹角为
π
3
,则
b
a
上的投影为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文)设x,y满足约束条件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值为
1
4
,则a的值
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)用2π平方米的材料制成一个有盖的圆锥形容器,如果在制作过程中材料无损耗,且材料的厚度忽略不计,底面半径长为x,圆锥母线的长为y
(1)建立y与x的函数关系式,并写出x的取值范围;
(2)圆锥的母线与底面所成的角大小为
π3
,求所制作的圆锥形容器容积多少立方米(精确到0.01m3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)若复数3+i是实系数一元二次方程x2-6x+b=0的一个根,则b=
10
10

查看答案和解析>>

同步练习册答案