精英家教网 > 高中数学 > 题目详情
已知g(x)=1-x2,f[g(x)]=
1-x2
x2
(x≠1),f(
1
2
)
的值
1
1
分析:利用换元法先求出f(x)的表达式即可求出函数值.
解答:解:令t=g(x)=1-x2,则x2=1-t,∵x≠1,∴t≠0.
∴f(t)=
1-(1-t)
1-t
=
t
1-t
(t≠0).
f(
1
2
)
=
1
2
1-
1
2
=1.
故答案为1.
点评:熟练掌握换元法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•资中县模拟)已知g(x)是定义在[-1,1]上的奇函数,且在区间[0,1]上满足三个条件:①对于任意的x1,x2∈[0,1],当x1<x2时,恒有g(x1)≤g(x2)成立,②g(
x
5
)=
1
2
g(x)
,③g(x)+g(1-x)=1.则g(
1
2
)+g(
1
5
)+g(
1
20
)
=(  )

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知g(x)=-x2-3,f(x)是二次函数,当x∈[-1,2]时,f(x)的最小值是1,且g(x)+f(x)是奇函数,求f(x)的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=x2,g(x)为一次函数,且为增函数,若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函数,且x∈(-∞,0)时,f(x)=x2+2x,求f(x);

(4)某工厂生产一种机器的固定成本为5 000元,且每生产100部,需要增加投入2 500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入的函数为H(x)=500x-x2,其中x是产品售出的数量,且0≤x≤500.若x为年产量,y表示利润,求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:资中县模拟 题型:单选题

已知g(x)是定义在[-1,1]上的奇函数,且在区间[0,1]上满足三个条件:①对于任意的x1,x2∈[0,1],当x1<x2时,恒有g(x1)≤g(x2)成立,②g(
x
5
)=
1
2
g(x)
,③g(x)+g(1-x)=1.则g(
1
2
)+g(
1
5
)+g(
1
20
)
=(  )
A.
3
2
B.
5
4
C.
7
6
D.
9
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf′(x)>f(x)在x>0时恒成立.

(Ⅰ)求证:函数g(x)=在(0,+∞)上是增函数;

(Ⅱ)求证:当x1>0,x2>0时,有f(x1+x2)>f(x1)+f(x2);

(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,求证:ln22+ln32+ln42+…+ln(n+1)2(n∈N*).

查看答案和解析>>

同步练习册答案