精英家教网 > 高中数学 > 题目详情
设函数f(x)=3
4+3x-x2

(1)求函数的定义域;
(2)求函数的值域;
(3)求函数的单调区间.
(1)由4+3x-x2=-(x+1)(x-4)≥0 可得-1≤x≤4,故函数的定义域为[-1,4].
(2)令t=4+3x-x2,由-1≤x≤4,可得 0≤t≤
25
4
,0≤
t
5
2
,1≤3
t
3
5
2
,而 3
5
2
=9
3
,∴1≤3
t
≤9
3

∴1≤f(x)≤9
3
,故函数的值域为 [1,9
3
]

(3)由于二次函数t=4+3x-x2 的对称轴为x=
3
2
,且-1≤x≤4,故函数的增区间为[-1,
3
2
],减区间为[
3
2
,4].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东莞二模)附加题:设函数f(x)=
1
4
x2+
1
2
x-
3
4
,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-1
x2
的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5-16-
1
2
与集合F的关系;
(2)若E={1,2,a},F={0,
3
4
},求实数a的值.
(3)若E=[
1
m
1
n
]
,F=[2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3
4+3x-x2

(1)求函数的定义域;
(2)求函数的值域;
(3)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1)

(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)•
b
,已知在△ABC中,内角A,B,C的对边分别为a,b,c,若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
)(x∈[0,
π
4
])
的取值范围.

查看答案和解析>>

同步练习册答案