精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x2-1
x2
的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5-16-
1
2
与集合F的关系;
(2)若E={1,2,a},F={0,
3
4
},求实数a的值.
(3)若E=[
1
m
1
n
]
,F=[2-3m,2-3n],求m,n的值.
分析:(1)由已知中函数f(x)的解析式,将x∈{1,2}代入求出集合E,利用对数的运算性质求出λ,进而根据元素与集合的关系可得答案;
(2)分别令f(a)=0,即
a2-1
a2
=0
,令f(a)=
3
4
,即可求出实数a的值.
(3)求出函数f(x)的导函数,判断函数的单调性,进而根据函数f(x)的值域为[2-3m,2-3n],x∈[
1
m
1
n
],m>0,n>0构造关于m,n的方程组,进而得到m,n的值.
解答:解:(1)∵f(x)=
x2-1
x2
,∴当x=1时,f(x)=0;当x=2时,f(x)=
3
4
,∴F={0,
3
4
}.
∵λ=lg22+lg2lg5+lg5-16 -
1
2
=lg2(lg2+lg5)+lg5-
1
4
=lg2+lg5-
1
4
=lg10-
1
4
=
3
4

∴λ∈F.…(5分)
(2)令f(a)=0,即
a2-1
a2
=0
,a=±1,取a=-1;
令f(a)=
3
4
,即
a2-1
a2
=
3
4
,a=±2,取a=-2,
故a=-1或-2.…(9分)
(3)∵f(x)=
x2-1
x2
是偶函数,且f'(x)=
2
x3
>0,
则函数f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数.
∵x≠0,∴由题意可知:
1
m
1
n
<0
或0<
1
m
1
n

1
m
1
n
<0
,则有
f(
1
m
)=2-3n
f(
1
n
)=2-3m
,即
1-m2=2-3n
1-n2=2-3m

整理得m2+3m+10=0,此时方程组无解;
若0<
1
m
1
n
,则有
f(
1
m
)=2-3m
f(
1
n
)=2-3n
,即
1-m2=2-3m
1-n2=2-3n

∴m,n为方程x2-3x+1=0,的两个根.∵0<
1
m
1
n
,∴m>n>0,
∴m=
3+
5
2
,n=
3-
5
2
.…(16分)
点评:本题考查的知识点是函数奇偶性与单调性,考查运算求解能力,考查方程思想,化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当p1,p2,…,pn均为正数时,称
n
p1+p2+…+pn
为p1,p2,…,pn的“均倒数”.已知数列{an}的各项均为正数,且其前n项的“均倒数”为
1
2n+1

(1)求数列{an}的通项公式;
(2)设cn=
an
2n+1
(n∈N*),试比较cn+1与cn的大小;
(3)设函数f(x)=-x2+4x-
an
2n+1
,是否存在最大的实数λ,使当x≤λ时,对于一切正整数n,都有f(x)≤0恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,且f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式; 
(2)画出函数f(x)的图象,并指出函数f(x)的单调区间.
(3)若方程f(x)=k有两个不等的实数根,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C所对边长分别是a,b,c,设函数f(x)=x2+bx-
1
4
为偶函数,且f(cos
B
2
)=0

(1)求角B的大小;
(2)若△ABC的面积为
3
4
,其外接圆的半径为
2
3
3
,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,-4≤x<0
-x+3,0≤x≤4
,且f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-x+n
x2+x+1
(x∈R,x≠
n-1
2
,x∈N*)
,f(x)的最小值为an,最大值为bn,记cn=(1-an)(1-bn
则数列{cn}是
常数
常数
数列.(填等比、等差、常数或其他没有规律)

查看答案和解析>>

同步练习册答案