精英家教网 > 高中数学 > 题目详情
在△ABC中,三内角A、B、C所对边分别为a、b、c若(b-c)sinB=2csinC且a=
10
,cosA=
5
8
,则△ABC面积等于(  )
分析:由已知(b-c)sinB=2csinC结合正弦定理可得b,c之间的关系,然后由a=
10
,cosA=
5
8
,结合余弦定理可得,
5
8
=cosA=
b2+c2-a2
2bc
可求,b,c,及sinA,代入三角形的面积公式S△ABC=
1
2
bcsinA
即可求解
解答:解:∵(b-c)sinB=2csinC
由正弦定理可得(b-c)b=2c2
即b2-bc-2c2=0
∴b=2c
a=
10
,cosA=
5
8

由余弦定理可得,
5
8
=cosA=
b2+c2-a2
2bc
=
4c2+c2-10
4c2

∴c=2,b=4,sinA=
1-(
5
8
)2
=
39
8

S△ABC=
1
2
bcsinA
=
1
2
×4×2
×
39
8
=
39
2

故选A
点评:本题主要考查了正弦定理、余弦定理及同角平方关系及三角形的面积公式在求解三角形中的综合应用,解题的关键是熟练掌握基本公式并能灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期为2π.
(1)当x∈R时,求f(x)的值域;
(2)在△ABC中,三内角A、B、C所对的边分别是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点(A,
1
2
)
经过函数f(x)的图象,b,a,c成等差数列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对应的边长分别为a、b、c,且A、B、C成等差数列,b=
3
,则△ABC的外接圆半径为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对的边分别为a、b、c,设向量
m
=(b-c,c-a)
n
=(b, c+a)
,若向量
m
n
,则角A的大小为(  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步练习册答案