精英家教网 > 高中数学 > 题目详情

过曲线f(x)=-x3+3x的点A(2,-2)的切线方程________.

y=-2或9x+y-16=0
分析:分点A(2,-2)为切点和不是切点两种情况讨论,利用导数的几何意义即可得到切线的斜率.
解答:∵f(x)=-3x2+3.
①若点A(2,-2)为切点时,则切线的斜率为f(2)=-3×22+3=-9,∴切线的方程为y+2=-9(x-2),化为9x+y-16=0;
②若点A(2,-2)不为切点时,设切点为P(m,n),则切线为y-n=(-3m2+3)(x-m),又点A(2,-2)在切线上,代入得-2-n=(-3m2+3)(2-m),又n=-m3+3m.
联立化为(m+1)(m-2)2=0,∵m≠2,解得m=-1,则n=-2.
∴切线方程为y=-2.
综上可得:过曲线f(x)=-x3+3x的点A(2,-2)的切线方程为y=-2或9x+y-16=0.
故答案为y=-2或9x+y-16=0.
点评:熟练正确分类讨论的思想方法和导数的几何意义、切线的方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线f(x)=x(a+b•lnx)过点P(1,3),且在点P处的切线恰好与直线2x+3y=0垂直.
求(Ⅰ) 常数a,b的值;(Ⅱ)f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]本题包括A、B、C、D共4小题,请从这4小题中选做2小题,每小题10分,共20分.
A.如图,AD是∠BAD的角平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E、F两点.求证:EF∥BC.
B.已知M=
.
1-2
3-7
.
,求M-1
C.已知直线l的极坐标方程为θ=
π
4
(ρ∈R),它与曲线C
x=1+2cosα
y=2+2sinα
(α为参数)相较于A、B两点,求AB的长.
D.设函数f(x)=|x-2|+|x+2|,若不等式|a+b|-|4a-b|≤|a|,f(x)对任意a,b∈R,且a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•乐山二模)设函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取得极小值-
23

(1)求函数f(x)的解析式;
(2)当x∈[-1,1]时,函数f(x)的图象上是否存在两点,使得过此两点处的切线相互垂直?试说明你的结论;
(3)设f(x)表示的曲线为G,过点(1,-10)作曲线G的切线l,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知a为常数,a∈R,函数f(x)=x2+ax-lnx,g(x)=ex.(其中e是自然对数的底数)
(Ⅰ)过坐标原点O作曲线y=f(x)的切线,设切点为P(x0,y0),求证:x0=1;
(Ⅱ)令F(x)=
f(x)g(x)
,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

同步练习册答案