精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知向量,且.记动点的轨迹为.

1)求的方程;

2)已知直线过坐标原点,且与(1)中的轨迹交于两点,在第三象限,且轴,垂足为,连接并延长交于点,求的面积的最大值.

【答案】12

【解析】

1)由推出,可知的轨迹是以为焦点,4为长轴的椭圆,写出椭圆的标准方程即可;(2)设直线的方程为,与椭圆方程联立求出MNH的坐标及直线HN的方程,直线HN的方程与椭圆方程联立求出Q点坐标从而求出面积的表达式,利用导数研究面积的最大值.

1)设

.

因为,所以

由椭圆的定义可知的轨迹是以为焦点,4为长轴的椭圆.

的方程为.

2)由题意可知直线的斜率一定存在,设直线的方程为),

与椭圆联立可得

所以.

的坐标为,直线的方程为

代入,可得

所以.

因为,所以

的坐标为

于是,所以,即.

因为.

所以.

,可得上单调递增,在上单调递减,

因此当时,函数有最大值,最大值为,即的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】伦敦眼坐落在英国伦敦泰晤士河畔,是世界上首座观景摩天轮,又称千禧之轮,该摩天轮的半径为6(单位:),游客在乘坐舱升到上半空鸟瞰伦敦建筑,伦敦眼与建筑之间的距离12(单位:),游客在乘坐舱看建筑的视角为.

1)当乘坐舱在伦敦眼的最高点时,视角,求建筑的高度;

2)当游客在乘坐舱看建筑的视角时,拍摄效果最好.若在伦敦眼上可以拍摄到效果最好的照片,求建筑的最低高度.

(说明:为了便于计算,数据与实际距离有误差,伦敦眼的实际高度为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点C上.

(1)求椭圆C的方程和其“卫星圆”方程;

(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(﹣2,0),F2(2,0),离心率为.过焦点F2的直线l(斜率不为0)与椭圆C交于A,B两点,线段AB的中点为D,O为坐标原点,直线OD交椭圆于M,N两点.

)求椭圆C的方程;

)当四边形MF1NF2为矩形时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,.

1)求证:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与正三角形的边长均为,它们所在平面互相垂直,平面平面.

1)求证:平面平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中.

1)当时,若函数上单调递减,求的取值范围;

2)当时,

①求函数的极值;

②设函数图象上任意一点处的切线为,求轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.

1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;

(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从地出发匀速前往D地,甲的路线是AD,速度为6千米/小时,乙的路线是ABCD,速度为v千米/小时.

(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;

(2)已知对讲机有效通话的最大距离是5千米.若乙先到达D,且乙从AD的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.

查看答案和解析>>

同步练习册答案