精英家教网 > 高中数学 > 题目详情

在线段AD上任取两点B、C,在B、C处折断此线段而得一折线,求此折线能构成三角形的概率.

答案:
解析:

  答案:设AD之长为l,而AB、AC之长度各为xl,yl,由于B、C在线段AD上,因而应有0≤x、y≤l,由此可见,点对(B、C)与正方形K={(x,y):0≤x≤l,0≤y≤l}中的点(x,y)是一一对应的,先设x<y,这时,AB、BC、CD能构成三角形的充要条件是

  AB+BC>CD,

  BC+CD>AB,

  CD+AB>BC

  注意:AB=xl,BC=(y-x)l,CD=(1-y)l

  代入上面三式,得

  符合此条件的点(x,y)必落在△GFE中.同样地,当y<x时,当且仅当点(x,y)落在△EHI中,AC、CB、BD能构成三角形,利用几何概型可知,所求的概率为

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长度为10cm的线段AD上任取两点B、C,在B、C处折断此线段而得一折线,求此折线能构成三角形的概率.

查看答案和解析>>

科目:高中数学 来源:2013届海南省高二下学期期末考试理科数学试卷(解析版) 题型:解答题

在长度为10cm的线段AD上任取两点B、C,在B、C处折断此线段而得一折线,求此折线能构成三角形的概率.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二10月月考数学 题型:解答题

(本题满分分)(理科)在线段AD上任取不同于A,D的两点B,C,在B,C处折断此线段得到一条折线。求此折线能构成三角形的概率。

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长度为10cm的线段AD上任取两点B、C,在B、C处折断此线段而得一折线,求此折线能构成三角形的概率.

查看答案和解析>>

同步练习册答案