(04年福建卷文)(12分)
在三棱锥S―ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
,M为AB的中点.
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N―CM―B的大小;
(Ⅲ)求点B到平面SMN的距离.
|
解析:解法一:(Ⅰ)取AC中点D,连结DS、DB.
∵SA=SC,BA=BC,
∴AC⊥SD且AC⊥DB,
∴AC⊥平面SDB,又SB
平面SDB,
∴AC⊥SB.
|
(Ⅱ)∵SD⊥AC,平面SAC⊥平面ABC,
∴SD⊥平面ABC.
过D作DE⊥CM于E,连结SE,则SE⊥CM,
∴∠SED为二面角S-CM-A的平面角.
由已知有
,所以DE=1,又SA=SC=2
,AC=4,∴SD=2.
在Rt△SDE中,tan∠SED=
=2,
∴二面角S-CM―A的大小为arctan2.
(Ⅲ)在Rt△SDE中,SE=
,CM是边长为4 正△ABC的中线,
. ∴S△SCM=
CM?SE=
,
设点B到平面SCM的距离为h,
由VB-SCM=VS-CMB,SD⊥平面ABC, 得
S△SCM?h=
S△CMB?SD,
|
解法二:(Ⅰ)取AC中点O,连结OS、OB.
∵SA=SC,BA=BC,
∴AC⊥SO且AC⊥BO.
∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC
∴SO⊥面ABC,∴SO⊥BO.
如图所示建立空间直角坐标系O-xyz.
则A(2,0,0),C(-2,0,0),
S(0,0,2),B(0,2
,0).
∴
=(-4,0,0),
=(0,-2
,2),
∵
?
=(-4,0,0)?(0,-2
,2)=0,
∴AC⊥BS.
(Ⅱ)由(Ⅰ)得M(1,
,0),
,
=(2,0,2). 设n=(x,y,z)为平面SCM的一个法向量,
则 ![]()
∴n=(-1,
,1), 又
=(0,0,2)为平面ABC的一个法向量,
∴cos(n,
)=
=![]()
∴二面角S-CM-A的大小为arccos![]()
(Ⅲ)由(Ⅰ)(Ⅱ)得
=(2,2
,0),
n=(-1,
,1)为平面SCM的一个法向量,
∴点B到平面SCM的距离d=![]()
科目:高中数学 来源: 题型:
(04年福建卷文)(12分)
甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)分别求甲、乙两人考试合格的概率;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(04年福建卷文)(12分)
如图,P是抛物线C:y=
x2上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C相交于另一点Q.
(Ⅰ)当点P的横坐标为2时,求直线l的方程;
(Ⅱ)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短距离.
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(04年福建卷文)(14分)
已知f(x)=
在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=
的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(04年福建卷文)一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com