精英家教网 > 高中数学 > 题目详情
椭圆的离心率是,它被直线截得的弦长是,求椭圆的方程.

试题分析:求椭圆方程基本方法为待定系数法,两个未知数只需列出两个独立条件.根据离心率是,得到.根据椭圆被直线截得的弦长,可列出第二个等式.由直线方程与椭圆方程联立方程组消去y得,结合韦达定理及弦长公式可得c=1.
试题解析:解: ∵
 ∴椭圆方程可写为        2分
将直线方程代入椭圆方程,消去y,整理得
 依韦达定理得       6分

解得c=1 ∴a2=3,b2=2. ∴椭圆方程为  12分  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
(1)求椭圆C的标准方程。
(2)过点Q(0,)的直线与椭圆交于A、B两点,与直线y=2交于点M(直线AB不经过P点),记PA、PB、PM的斜率分别为k1、k2、k3,问:是否存在常数,使得若存在,求出名的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点D(0,-2),过点D作抛物线的切线l,切点A在第二象限。

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点,焦点在y轴上,若其离心率为,焦距为8,则该椭圆的方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为2,则m的取值是 (  )
A.7B.5C.5或7D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.

(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.
已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆+=1的长半轴长和短半轴长,若此椭圆的一焦点与抛物线y2=4x的焦点重合,则椭圆的方程为(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的一个顶点A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程.
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

同步练习册答案