【题目】已知数列{an}满足: ,anan+1<0(n≥1),数列{bn}满足:bn=an+12﹣an2(n≥1).
(1)求数列{an},{bn}的通项公式
(2)证明:数列{bn}中的任意三项不可能成等差数列.
【答案】
(1)解:由题意可知,
令cn=1﹣an2,则
又 ,则数列{cn}是首项为 ,公比为 的等比数列,即 ,
故 ,
又 ,anan+1<0
故
因为 = ,
故
(2)证明:假设数列{bn}存在三项br,bs,bt(r<s<t)按某种顺序成等差数列,
由于数列{bn}是首项为 ,公比为 的等比数列,
于是有2bs=br+bt成立,则只有可能有2br=bs+bt成立,
∴
化简整理后可得,2=( )r﹣s+( )t﹣s,
由于r<s<t,且为整数,故上式不可能成立,导致矛盾.
故数列{bn}中任意三项不可能成等差数列.
【解析】(1)对 化简整理得 ,令cn=1﹣an2 , 进而可推断数列{cn}是首项为 ,公比为 的等比数列,根据等比数列通项公式求得cn , 则a2n可得,进而根据anan+1<0求得an . (2)假设数列{bn}存在三项br , bs , bt(r<s<t)按某种顺序成等差数列,由于数列{bn}为等比数列,于是有br>bs>bt , 则只有可能有2bs=br+bt成立,代入通项公式,化简整理后发现等式左边为2,右边为分数,故上式不可能成立,导致矛盾.
【考点精析】通过灵活运用数列的定义和表示和等差数列的性质,掌握数列中的每个数都叫这个数列的项.记作an,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作an;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”.
(1)若是“一阶比增函数”,求实数a的取值范围。
(2)若是“一阶比增函数”,求证:对任意,,总有;
(3)若是“一阶比增函数”,且有零点,求证:关于x的不等式有解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的上下两个焦点分别为, ,过点与轴垂直的直线交椭圆于、两点, 的面积为,椭圆的离心力为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知为坐标原点,直线: 与轴交于点,与椭圆交于, 两个不同的点,若存在实数,使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点, 分别是椭圆的左、右顶点.
()求圆和椭圆的方程.
()已知, 分别是椭圆和圆上的动点(, 位于轴两侧),且直线与轴平行,直线, 分别与轴交于点, .求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4人去旅游,旅游地点有A,B两个地方可以选择,但4人都不知道去哪里玩,于是决定通过掷一枚质地均匀的骰子决定自己去哪里玩,掷出能被3整除的数时去A地,掷出其他的则去B地.
(1)求这4个人恰好有1个人去A地的概率;
(2)用X,Y分别表示这4个人中去A,B两地的人数,记ξ=XY,求随机变量ξ的分布列与数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com