精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,则该几何体的底面积总和为(  )
A、
2
3
B、1
C、3
D、6
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:根据几何体的三视图,得出该几何体是底面为直角梯形,高为5的四棱柱,求出它的底面积总和即可.
解答: 解:根据几何体的三视图,得;
该几何体是底面为直角梯形,高为2的四棱柱,
∴该几何体的底面积是两个上底为1,下底为2,高为1的梯形,
∴底面积总和是
S=2×(1+2)×1×
1
2
=3.
故选:C.
点评:本题考查了空间几何体的三视图的应用问题,解题时应根据几何体的三视图,得出该几何体是什么图形,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数.
(1)求实数a的值.
(2)已知不等式f(logm
3
4
)+f(-1)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-kx(k∈R)
(Ⅰ)若f(x)最大值为0,求k的值;
(Ⅱ)已知数列{an}满足a1=1,an+1=ln(1+an)-
1
2
an

(i)求证:
n
i=1
ai
<2;(ii)是否存在n使得an∉(0,1],做不存在,请给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司准备进行两种组合投资,稳健型组合投资是由每份金融投资20万元,房地产投资30万元组成;进取型组合投资是由每份金融投资40万元,房地产投资30万元组成.已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元.若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,要使一年获利总额最多,则稳健型组合投资与进取型组合,合投资分别注入的份数分别为(  )
A、x=4,y=2
B、x=3,y=3
C、x=5,y=1
D、x=5,y=2

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=
|lg|x-1||,(x≠1)
0,(x=1)
,若关于x的方程[f(x)]2+bf(x)+c=0有7个不同的实根,则必有(  )
A、b<0且c=0
B、b>0且c<0
C、b<0且c>0
D、b≥0且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-(k-1)a-x,(a>0且a≠1)是定义域为R的奇函数,且f(1)=
3
2

(1)求k,a的值;
(2)求函数f(x)在[1,+∞)上的值域;
(3)设g(x)=a2x+a-2x-2m•f(x),若g(x)在[1,+∞)上的最小值为-2,求m的值;
(4)对于(3)中函数g(x),如果g(x)>0在[1,+∞)上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cosA=
3
5

(1)求cos2
A
2
-sin(B+C)的值;
(2)如果△ABC的面积为4,AB=2,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

某渔场鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际的养殖量x要小于m,留出适当的空闲量,已知鱼群的年增加量y(吨)和实际养殖量x(吨)与空闲率(空闲量与最大养殖量的比值叫空闲率)的乘积成正比(设比例系数k>0),则鱼群年增长量的最大值为(  )
A、
mk
2
B、
mk
4
C、
m
2
D、
m
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比)
(2)求数列{an}的通项公式.
(3)求数列{nan+2n2}的前n项和.

查看答案和解析>>

同步练习册答案