精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知椭圆的左右焦点分别为F1、F2,点P在椭圆C上,且PF1⊥F1F2, |PF1|=,  |PF2|=.  

(I)求椭圆C的方程;

(II)若直线L过圆的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。

 

【答案】

解法一:(Ⅰ)因为点P在椭圆C上,所以,a=3.      …….2分

在Rt△PF1F2中,故椭圆的半焦距c=,

从而b2=a2c2=4,                      ………………………………………….5分

  所以椭圆C的方程为=1       ………………………………………….7分

(Ⅱ)设AB的坐标分别为(x1,y1)、(x2,y2).   由圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).   从而可设直线l的方程为   y=k(x+2)+1,        ….9分

   代入椭圆C的方程得  (4+9k2x2+(36k2+18k)x+36k2+36k-27=0.         ….12分

   因为AB关于点M对称.   所以   解得

所以直线l的方程为   即8x-9y+25=0.   (经检验,符合题意) ….14分

 

解法二:(Ⅰ)同解法一.

(Ⅱ)已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).

   设AB的坐标分别为(x1,y1),(x2,y2).由题意x1x2

                                                                    ①

                                                                    ②

由①-②得                  ③

因为AB关于点M对称,所以x1+ x2=-4, y1+ y2=2,

代入③得,即直线l的斜率为

所以直线l的方程为y-1=(x+2),即8x-9y+25=0.(经检验,所求直线方程符合题意.)

【解析】略         

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案