精英家教网 > 高中数学 > 题目详情
一般地,在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),设S2009为其前2009项的和,则当数列{xn}的周期为3时,S2009=______.
∵xn+1=|xn-xn-1|(n≥2,n∈N*),
且x1=1,x2=a(a≤1,a≠0),
∴x3=|x2-x1|=1-a
∴该数列的前3项的和s3=1+a+(1-a)=2
∵数列{xn}周期为3,
∴该数列的前2009项的和s2009=s2007+x1+x2=
2007
3
s3+1+a=1339+a,
故答案为1339+a.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*);一般地,规定{△kan}为数列{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知数列{an}的通项公式an=
5
2
n2-
13
2
n(n∈N*),试证明{△an}是等差数列;
(Ⅱ)若数列{an}的首项a1=1,且满足△2an-an+1+an=-2n(n∈N*),求数列{an}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,记bn=
a1(n=1)
2n-1
an
(n≥2,n∈N*)
,求证:b1+
b2
2
+…+
bn
n
17
12

查看答案和解析>>

科目:高中数学 来源: 题型:

一般地,在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),设S2009为其前2009项的和,则当数列{xn}的周期为3时,S2009=
1339+a
1339+a

查看答案和解析>>

科目:高中数学 来源:0117 期中题 题型:解答题

对于数列{an},规定数列{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*);一般地,规定为{an}的k阶差分数列,其中,且
(1)
(2)若数列的首项,且满足 ,求数列的通项公式;
(3)在(2)的条件下,判断是否存在最小值,若存在求出其最小值,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:2011年四川省眉山市高考数学二模试卷(理科)(解析版) 题型:解答题

对于数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*);一般地,规定{△kan}为数列{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知数列{an}的通项公式an=n2-n(n∈N*),试证明{△an}是等差数列;
(Ⅱ)若数列{an}的首项a1=1,且满足△2an-an+1+an=-2n(n∈N*),求数列{an}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,记bn=,求证:b1++…+

查看答案和解析>>

同步练习册答案