精英家教网 > 高中数学 > 题目详情
已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,设f(x)=
a
b
,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)的单调递增区间;
(3)函数f(x)的图象可由函数y=sin2x经过怎样的变换得到.
分析:(1)根据两向量的坐标,利用平面向量的数量积运算法则列出关系式,再利用二倍角的正弦、余弦函数公式化简,利用两角和与差的正弦函数公式整理为一个角的正弦函数,根据周期为π,利用周期公式即可求出ω的值;
(2)根据正弦函数的递增区间求出x的范围,即可确定出f(x)的递增区间;
(3)利用图象平移及变换规律即可得到结果.
解答:解:(1)∵向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,
∴f(x)=
a
b
=
3
sinωxcosωx+3cos2ωx=
3
2
sin2ωx+
3
2
cos2ωx+
3
2
=
3
sin(2ωx+
π
3
)+
3
2

∵T=
|2ω|
=π,ω>0,∴ω=1;
(2)f(x)=
3
sin(2x+
π
3
)+
3
2

令-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ,k∈Z,得到-
12
+kπ≤x≤
π
12
+kπ,k∈Z,
则f(x)的单调递增区间为[-
12
+kπ,
π
12
+kπ],k∈Z;
(3)f(x)=
3
sin(2x+
π
3
)+
3
2
的图象由y=sin2x向右平移
π
6
个单位,y的值伸长
3
倍,再向上平移
3
2
个单位得到.
点评:此题考查了两角和与差的正弦函数公式,平面向量的数量积运算,正弦函数的单调性,以及三角函数图象的变换,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,记函数f(x)=
a
b
,若f(x)的最小正周期为π
(Ⅰ)求ω;
(Ⅱ)当0<x≤
π
3
时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3sin α,cos α),
b
=(2sin α,5sin α-4cos α),α∈(
2
,2π)
,且
a
b

(1)求tan α的值;
(2)求cos(
α
2
+
π
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0),函数f(x)=
a
b
+
1
2
的图象的两相邻对称轴间的距离为
π
4

(1)求ω值;
(2)若x∈(
7
24
π,
5
12
π)
时,f(x)=-
3
5
,求cos4x的值;
(3)若cosx≥
1
2
,x∈(0,π),且f(x)=m有且仅有一个实根,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,记函数f(x)=
a
b
-
1
2
已知f(x)的最小正周期为π.
(1)求ω;
(2)求f(x)的单调区间;对称轴方程;对称中心坐标;
(3)当0<x≤
π
3
时,试求f(x)的最值.

查看答案和解析>>

同步练习册答案