【题目】一个口袋里装有
个白球和
个红球,从口袋中任取
个球.
(1)共有多少种不同的取法?
(2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?
【答案】(1)56;(2)35;(3)21
【解析】分析:(1)从口袋里的
个球中任取
个球,利用组合数的计算公式,即可求解.
(2)从口袋里的
个球中任取
个球,其中恰有一个红球,可以分两步完成:第一步,从
个白球中任取
个白球,第二步,把
个红球取出,即可得到答案.
(3)从口袋里任取
个球,其中不含红球,只需从
个白球中任取
个白球即可得到结果.
详解:(1)从口袋里的
个球中任取
个球,不同取法的种数是![]()
(2)从口袋里的
个球中任取
个球,其中恰有一个红球,可以分两步完成:
第一步,从
个白球中任取
个白球,有
种取法;
第二步,把
个红球取出,有
种取法.
故不同取法的种数是: ![]()
(3)从口袋里任取
个球,其中不含红球,
只需从
个白球中任取
个白球即可,
不同取法的种数是
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(Ⅰ)求曲线
,
的标准方程;
(Ⅱ)若点
,
在曲线
上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
分别是椭圆C:
的左、右焦点,过点
作
轴的垂线,交椭圆
的上半部分于点
,过点
作
的垂线交直线
于点
.
![]()
(1)如果点
的坐标为(4,4),求椭圆
的方程;
(2)试判断直线
与椭圆
的公共点个数,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.
(1)求袋中原有白球的个数;
(2)求取球两次终止的概率
(3)求甲取到白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等比数列
的前
项和为
,首项
,且
,正项数列
满足
,
.
(1)求数列
,
的通项公式;
(2)记![]()
,是否存在正整数
,使得对任意正整数
,
恒成立?若存在,求正整数
的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+
),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,已知第
行的所有数字之和为
,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,……,则此数列的前56项和为( )
![]()
A. 2060B. 2038C. 4084D. 4108
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com