精英家教网 > 高中数学 > 题目详情

【题目】一个口袋里装有个白球和个红球,从口袋中任取个球.

(1)共有多少种不同的取法?

(2)其中恰有一个红球,共有多少种不同的取法?

(3)其中不含红球,共有多少种不同的取法?

【答案】(1)56;(2)35;(3)21

【解析】分析:(1)从口袋里的个球中任取个球,利用组合数的计算公式,即可求解.

(2)从口袋里的个球中任取个球,其中恰有一个红球,可以分两步完成:第一步,从 个白球中任取个白球,第二步,把个红球取出,即可得到答案.

(3)从口袋里任取个球,其中不含红球,只需从个白球中任取个白球即可得到结果.

详解:(1)从口袋里的个球中任取个球,不同取法的种数是

(2)从口袋里的个球中任取个球,其中恰有一个红球,可以分两步完成:

第一步,从个白球中任取个白球,有种取法;

第二步,把个红球取出,有种取法.

故不同取法的种数是:

(3)从口袋里任取个球,其中不含红球,

只需从个白球中任取个白球即可,

不同取法的种数是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的标准方程;

(Ⅱ)若点在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中t∈R.

(1)t=1时,求曲线在点处的切线方程;

(2)t≠0时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点分别是椭圆C:的左、右焦点,过点轴的垂线,交椭圆的上半部分于点,过点的垂线交直线于点.

(1)如果点的坐标为(4,4),求椭圆的方程;

(2)试判断直线与椭圆的公共点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.

(1)求袋中原有白球的个数;

(2)求取球两次终止的概率

(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:

班号

一班

二班

三班

四班

五班

六班

频数

5

9

11

9

7

9

满意人数

4

7

8

5

6

6


(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列的前项和为,首项,且,正项数列满足.

(1)求数列的通项公式;

(2)记,是否存在正整数,使得对任意正整数恒成立?若存在,求正整数的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,已知第行的所有数字之和为,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,……,则此数列的前56项和为( )

A. 2060B. 2038C. 4084D. 4108

查看答案和解析>>

同步练习册答案